[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심각하게 ㅆ창남? ㅅㅂ 올해 갔어야 됐네…
-
난~ 1
겁쟁이 랍니다아~
-
물리 강사한테 문제 들고갔더니 자꾸만 내 허벅지를 쓰다듬는거임뇨 자꾸 야추에...
-
수리 다 푸셨나요? 올해 좀 쉬웠던거 깉은데
-
내년 사문은 n제랑 실모 시장 엄청 확대될 거 같다 올해는 찐하위권 과탐러들이 주로...
-
내 방 벽지 2
아직 뽀로로임
-
ㅆㅂ 18
-
전적대는 에리카공대에요….. 건동홍 가고 싶었는데 이런
-
솔직히 가격 비싸서 고민중인데 피티 효과 좋나요
-
티내면 알아서 해줌 근데 과도하면 아시죠? 오래오래 보고 싶습니다
-
올해는 화기화지로 응시했고 지방약대목표로 내년수능을 응시할예정입니다... 이번에...
-
맛점
-
현재 예비고3이고 이미 2025 수1, 수2, 미적분 뉴런 다 돌렸는데...
-
카리나나 한예슬같은 얼굴?? 여백 조금 있는 미인 (신세경 이연희 전지현..) vs...
-
그리 정직하지는 않은거같음 내신을 좋아하진 않았고 자연선택에 의해 정시가 되었지만...
-
ㅈㄱㄴ
-
2등급까지는 쉬웠나요??
-
나 수능망해서 안내키는데 그러고 복학 안할건데......
-
24 잊는것은 병인가 25 #~#, 킥킥
-
주식 하는분들 11
무슨 앱 써요?
-
투표좀ㅑ
-
예비고3 기출풀고 있는 중인데 2010 이전 문제들도 풀어야 하나요? 2
그 문제들까지 다 풀기에는 회독하기에 버거울 것 같은데 필수인가요?
-
왜 모르겠지
-
저희 어머니는..태어날 때부터 무정자증 저희 아버지는..태어날 때부터 임신를 하지...
-
영어학원을 다니다가 이제 혼자할만치 된거같아서 인강듣고 하려는데 션티,이명학,조정식...
-
마구 임신하기 7
애 오지게냫기
-
제가 중대 오전 토요일 날 시험 본 학생인데 중대 1번 문제 확통 문제였는데 제가...
-
사이비한테
-
에리카 0
경영이나 중간공 가능할까요?
-
의대 모집정지 떡밥 의치대전 (주로 치대 약코를 주장하는 의뱃vs의대 적폐를...
-
반공동체적 정파들 거르려는 의도는 알지만 정시 일반이 줄어드는건 열받는걸? 나같은...
-
맛점하세요 6
-
편의점에서 바꿔달라 해야하나? 잔고 365원이라 급한데
-
사탐은 생윤으로 갈아끼울 예정이고 내년 자료 나온게 없는데 기출 한번씩 더 볼까요?
-
정원 외 정원까지 다 포함해서
-
나도 잘 생기고 싶다 19
-
학잠 비싸네 4
지금이 딱 철인데 아깝군..
-
ㅠㅠ
-
그동안 정말 많은일이 있었어
-
안녕하세요 이번에 수능 본 06인데요 이번 수능 성적이 조금 맘에 안 들어서...
-
지금 가천대 기출문제 풀어 보고 있는데 채점 기준에 나온 문장 그대로 답안에 적어야...
-
https://youtu.be/RNQiNR9jlmI?si=PFdHgLpeNfNCGQT...
-
또 번따당햇네 9
뻥임뇨
-
우울해서 빵샀어 16
...
-
수시러고 최저 맞추는용인데 지1 자료해석 하기도 싫고 의문사 많이 당해서 물2...
-
시험 3주 남았음.. 공부 1도 안 해서 스스로 독학해야 함 진짜 오늘부턴 공부한다
-
스벅은 30분마다 갱신해야해서 ㅠ
-
노베인데 공통수학 모의고사점수 얼마정도 나와야하나요? 1
수상하 끝내서 이제 모고 봐보고 수원투 하려는데 몇점 이상부터 하는거 추천하시나요...
-
김범준 들으려고 하는데 그전까지 이미지 세젤쉬 하려고 했거든요. 근데너무 쉬울 것...
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!