[칼럼] 머리 좋은 학생들이 수포자가 되는 메커니즘
안녕하세요. 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 수학에 재능 있는, 똑똑한 학생들이 수포자가 되는 메커니즘에 대해 포스팅 하도록 하겠습니다.
블로그 : https://blog.naver.com/math-fish 에서 더 많은 칼럼을 보실 수 있습니다 :)
1. 해당 학년에서 높은 성취를 보인다.
: 수학에 재능이 있으니 해당 학년에서 높은 성취를 보이는 것은 당연합니다.
2. 선행 및 심화 학습을 시작한다.
: 성취도가 높기 때문에 선행 및 심화 학습을 시작합니다. 이때, 대부분의 경우, 개념(정의, 정리)을 온전하게 자기 것으로 만들지 못한 상태에서 문제풀이를 하게 됩니다. 아이 스스로 배운 것에 근거해서 문제를 분석하고, 논리적으로 사고할 수 없는 상황에서 많은 문제를 빨리 풀어야 하기 때문에
"선생님이 알려준 방법을 '고민' 없이 따라 푸는 방식"
으로 공부합니다.
3. 선행 및 심화이 진행되면서 한계에 부딪힌다.
: 수학에 재능이 있기 때문에 1-2년 선행 및 심화 학습에서도 "정답률"이 나쁘지 않습니다. 따라서 "표면적"으로는 별 문제가 없는 것처럼 보입니다. 하지만 "선생님이 알려준 방법을 고민 없이 따라 푸는 방식"으로 "답을 맞히는데 초점"을 맞추고 공부하는 과정에서 기초가 쌓이지 않기 때문에, 조금 더 높은 단계로 나아가면 한계에 부딪히게 됩니다.
예를 들어 보겠습니다!
위의 예제는 시쳇말로 "노가다"를 통해 해결이 가능합니다. 8차식을 3차식으로 나눗셈을 해도 답을 구할 수 있기 때문입니다. 대부분의 경우 "노가다"를 통해 답을 맞히면, 뒤도 돌아보지 않고 다음으로 넘어갑니다. 하지만 "노가다"를 통해 위 문제를 해결하는 것이 고등수학에서의 학습 목표일까요? 이 과정에서 무엇을 배울 수 있을까요? 아무것도 배우지 못할 것입니다.
중요한 것은 얼마나 빨리 많이 했는지가 아니라, 얼마나 많이 배웠는지 입니다.
저는 위 문제를 배운 것에 근거해서 "4가지 이상"의 다양한 방법으로 풉니다. 그중에서도 가장 중요한 두 가지를 간단히 소개하면 다음과 같습니다.
풀이1. x의 네제곱을 3차식으로 나눈 나머지를 구한 뒤에, x의 여덟제곱=(x의 네제곱)의 제곱임을 이용한다.
: 차수가 높은 것을 낮은 것을 이용해서 나타냄으로써 문제를 해결합니다.
풀이2. 조립제법을 이용한다.
: 주어진 3차식을 1차식 3개의 곱으로 인수분해 할 수 있음을 이용한 풀이입니다. 이 또한 차수가 높은 것을 낮은 것을 이용해 나타냄으로써 문제를 해결하는 것입니다. (단지, "조립제법을 써서 쉽게 풀 수 있다!"가 아니라, 이 문제에서 어떻게 조립제법을 생각해 냈는지, 조립제법을 써서 풀어도 되는 근거는 무엇인지, 등등에 대해 생각해 보아야 합니다!)
차수가 높은 식의 차수를 낮추는 것, 문자 수가 많은 식의 문자 수를 줄이는 것, 항의 수가 많은 식의 항의 수를 줄이는 것은 수학의 전 분야에서 매우 중요한 학습 목표입니다. 하지만 대부분의 학생들이 이를 알지 못한 채로, 기계적으로 답을 맞히는 공부를 합니다. 때문에 기초가 쌓이지 않습니다.
재능이 있으면 1-2년의 선행에서는 "높은 정답률"을 보이기 때문에 기초가 쌓이지 않고 있다는 것을 눈치채지 못합니다. 하지만 (기초가 쌓이지 않기 때문에) 재능을 넘어서는 수준에 도달하게 되면 일시에 무너지게 됩니다.
고1 과정에서는 그럭저럭 잘 했는데, 고2 과정에서 급격히 무너진다거나, 고2 과정까지는 잘 버텼는데 고3 과정에서 급격히 무너지는 경우나 기본문제나 유제에서는 정답률이 70-80% 이상이었다가 연습문제에서 50% 이하로 떨어지는 경우가 대부분 이에 해당합니다.
4. 한계에 부딪히면 다시 앞의 과정으로 돌아가서 반복하다가 결국 수포자가 된다.
: 대부분의 학생들은 벽에 부딪히면 다시 앞의 과정으로 돌아갑니다. 하지만 똑같은 방법으로 단지 한 번 더 공부한다고 해서 기초가 쌓이고 문제가 해결되는 것은 아닙니다.
한계에 부딪혔던 방법으로, 단순히 몇 번 더 반복했다고 해서 실력이 쌓이지는 않습니다. 대부분의 경우, 이와 같은 과정을 수차례 반복한다고 해도, (근본적인 변화가 없다면) 한계에 부딪혔던 곳에서 또 다시 한계에 부딪히고 맙니다.
지난하고 어려운 과정을 참고 수차례 반복했음에도 불구하고, 나아질 희망이 보이기는커녕 학년이 올라갈수록 성적이 떨어지는 상황에서 하나둘씩 수학을 포기하게 됩니다.
수학에 재능이 있는 학생의 경우, 생각나는 데로 문제를 풀어도 답을 맞히는 경우가 많습니다. 배운 것에 근거해서 문제를 분석하지 않고도 답을 잘 맞히는 것이 좋아보일 수도 있지만, 이렇게 공부하면 기초가 쌓이지 않습니다. 그리고 기초를 쌓지 못하면 결국 재능을 넘어서는 수준에서 일시에 무너지게 됩니다. 높이 올라가서 무너지면 고통은 두 배, 세 배가 됩니다.
재능은 양날의 검입니다. 재능이 뛰어난 데도 불구하고, 위와 같은 이유로 재능 때문에 기초를 쌓지 못하면 재능을 넘어서는 수준에서 일시에 무너지는 경우가 무척 많습니다. (이와 같은 경우는 하나고에도, 서울과학고에도, 대학과 대학원에도 무척 많습니다.)
중요한 것은 답을 맞히는 것이 아니라, 개념(정의, 정리)를 온전히 이해하고, 이를 바탕으로 문제를 분석하고, 논리적으로 사고하는 연습을 하는 것입니다. 선행이나 심화를 하지 말라는 것이 아닙니다. 단지, 무조건 빨리 많이 하는 것보다, 조금 속도를 늦추고, 조금 적게 풀더라도 하나하나 온전하게 자기 것으로 만들며 기초를 다지고 실력을 쌓아나가는 방식으로 공부할 것을 권장하는 것입니다.
조금이나마 도움이 되었으면 좋겠네요! 다음에 또 만나요^^
1. 전자책 "수학을 망치는 N가지 이유" : https://docs.orbi.kr/docs/11802/
2. 전자책 "서울대 박사가 알려주는 수학의 비밀" : https://docs.orbi.kr/docs/11799/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 20번 뭔가 해설하고 다르게 풀었는데 제가 생각한게 맞는지 확인 가능하실분 계실까요
-
6모 1 9모 2 10모 2 현돌 파이널 44 47 50 걍재미로 ㅇㅇㅇ ㅎㅎ
-
근데 쉽게내려고 계속 깎다보니 이래 됐다고 들음 친구 학교 쌤이 그럼 평가원 자주 가신다던데
-
20때 bis는 다맞았는데 계약 한문제 틀림 열차표 내용일치 문제 이거 아직도 헷갈림
-
생체 리듬 돌려놓기 프로젝트 1일차
-
도덕이란 뭘까 2
요즘 고민임
-
안떴다. 해모 시즌 1~4 중에 하나만 추천좀 그냥 멘탈 힐링용으로 파이널은 풂...
-
쌍사특 0
세계사 : 이게 1컷 50이라고? 동아시아사 : 이게 1컷 50이 아니라고?...
-
사문 강k 15 0
사문 강k 15번 어떤방법으로 푸는건가요 풀려고해도 안풀려서요
-
난 만점이다 0
오늘 비록 6시에 뛰쳐나와서 피방롤을 조지긴했지만 수능은 잘볼것이다 반드시.
-
아예 과거버전도 못보게 막아놨네 어휴
-
레어 사고 싶다 2
현재로서 구매가능한 레어는 괴산군 레어뿐.. 괴산군 잘 몰라요.. 안 땡겨요 ㅠ
-
엄청 나중에 돌아와서 몇명만 딱 팔해놔도 누군지 알고 평소엔 커뮤 잘 안하는데 딱...
-
올해 계속 수학 쉽게 내라고 명령 여러번 떨어졌다고... 9평도 그 일환이고
-
1. 관대한 pdf 예전엔 누가 피뎊 쓰다 걸리면 메인글이 그사람 욕으로 도배되고...
-
미헌법중,1조는 정부의 입법부 즉 미국 의회를 정의하고 있다. 여기에는 하원과...
-
내일은 비역학 개념책 조진다
-
카톡으로 용돈 보내주셨는데 수능 끝나고 받는게 맞겠죠? 감사인사는 드렸는데
-
(✷‿✷)
-
수능은 자신감이 2
ㅣ진짜 중요한가보네요… 윤도영쌤도 그렇게 말씀하시고 저희 학원쌤도 똑같이 말씀하시던데
-
이제 미적 전범위 개념학습(미친개념 찍먹하고 예제+연습문제 공책에다 풂) 끝나서...
-
풀수있는문제가 꽤 많았네
-
내년 고3이라 가을때부터 천천히 심맨님 커리 따라갓엇는데 이제 곧 끝나서 커리중에...
-
https://orbi.kr/0009658324/ 전 이거
-
없겠져..?
-
독서지문 (1) 비극과 희극 두 부분으로 되어 있는 듯하지만 희극을 다루었을 자료중...
-
왜 난 느낌상 3
올해 수능이 국어 24독서보다 살짝어렵 24문학보다 쉽 수학 23,22어딘가 영어...
-
저 불닭 사먹게 덕코좀요 ㅈㅂㅈㅂ
-
원래 삼각함수 덧셈정리 문제는 수능에 잘 안 나오나? 7
최근 미적기출들에서 삼각함수 덧셈정리문제는 잘 못 본 거 같은데 그냥 범위가 많은데...
-
젠장잠이안와 1
어떻게 고친 수면패턴인데...어제한번 늦게잤다고 다시 와장창
-
888484 3
훈훈훈호훈호
-
-
평가원스러운 지문 들고가려 했는데 그게 어떤건지 잘 모르겠어요 보통 어떤 지문 들고...
-
이건 사람 글씨가 아니야..
-
남자인게 대놓고 티남 ㅋㅋ
-
1. 이혼 시 부부협의 없이 가정법원이 지정한다 2. 부부 협의로 결정한다 두...
-
글씨 잘ㅆ는데 7
플래너 올려주고싶다
-
찜뱃 얻는 법 10
https://orbi.kr/00010821728 여기 나와있네요
-
작수컷이 47인가.. 괴물들이네 진짜 강민웅쌤은 보통 쉬운회차도 45정도라고 말씀하시던데
-
영어2 진짜 너무 간절함 작수71 6모미응시(논술반수) 9모76 요즘들어서는 하루에...
-
영어 국어 정말 약하기도 하고 학원이 잘 맞아 영어 국어는 계속 다니되 수학은 끊고...
-
김승모 3회 1
애끼다가 풀었는데 독서 문학 너무 술술 풀려서 처음으로 시간 남았음. 그런데 너무...
-
25 9모를 풀로 풀어야겠다
-
현정훈T 인강 1
오늘 현강에서 내년에 어디서 수업 할지 정해진 거 아무것도 없다고 메가대성...
-
그걸 어케 기억하고 어케 쓰는 거야
-
아님 그냥 실모 치고 채점 후 점수 확인만 하시나요 전 독서 문학에서 아아주 골고루...
-
개인사정으로 재수로 붙은 대학을 못 다녔음 (현 21) 재수로 붙은 대학도 그리...
-
그땐 일주일에 국어 실모 3개 이상 풀면 대평가원 논리에 반역을 든 허수취급 받음 지금은 반대인듯
-
숨마국어 이분 아시는분 연계작품 보는데 은근 그림으로 연상잘됨
첫번째 댓글의 주인공이 되어보세요.