수학적인 영감 떠오름
매개 변수에 관한건데, 보통 2차원 좌표평면에 그래프를 표현해야만 한다는 생각들을 하겠지만, x=t에 대한 함수, y=t에 대한 함수 이런 두개의 관계식이 있을때, t축을 xy 평면의 원점을 지나게 수직으로 도입하여 3차원의 공간을 만들어서 거기에 점들을 찍으면, 뭔가 2차원에서 ㅈ같이 표현되던게, 3차원에서 명확하게 드러날 '가능성'이 있다는 생각을 함. 예를 들면 원이 xy 평면에서는 그냥 동그란 원이겠지만, t축을 도입했을 때 마치 감자 꽈배기? 그런 모양으로 드러날 가능성도 있다는 거지. 물론 우리가 시각적으로 어떤 자료를 보고 이해할 수 있는 차원의 한계는 3차원적인 공간이 끝이겠지만, (3d는 생각할 수 있어도, 4차원은 생각 못하잖아. 그거 말하는 거야.) 그럼에도 불구하고 우리가 10차원, 100차원의 공간을 이해할 수 있다고 재밌는 하나의 상상을 해본다면, 좀 더 simplify의 가능성이 커지지 않을까?
그리고 좀 더 이 해석을 확장해본다면, 이건 언제까지나 유추에 불과하지만, 마치 2차원 평면에서 3차원 공간으로 사고의 틀을 확장했을 때, (그래프 차원에서)좀 더 본질에 대한 이해를 하기가 용이해지고, 쉬워진다는 사실로부터, 더 높은 차원에 대한 이해도가 직접적이진 않더라도, 간접적으로나마 함양된다면, 더 큰... 사고의 도약이 가능해지진 않을까? (2차원에서 보든 3차원에서 보든 4차원에서 보든 탐구 대상의 본질이 바뀔 것이라는 말은 아닌데, 3차원을 통해 보는 것이 더 쉽게 본질에 대한 이해를 시켜줌으로써 본질에 대한 접근을 2차원일 때에 비해 용이하게 만들어준 것처럼, 차원이 높아지면 이에 따른 탐구의 용이성, 노력의 필요성의 줄어듦 같은 효과에 의해 더 높은 수준의 이해까지 나아갈 수 있는 계기를 마련해 줄 수 있을 것 같다는 말임. )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실시간 바로 묻혀버림 ㅋㅋ 정상화의 신 대석열
-
플랜C는 뭐냐
-
같이 쪽지로 소통할 여붕이 없나요?
-
임기 절반밖에 안했는데도 기억에 빡 남네
-
다들잘자 3
굿나잇이야
-
여름방학을 1주일 해서
-
헌법 조항 보니까 23조 1항에 7인이상 출석이 있어야 심리를 열 수 있다는데...
-
거의 끝나긴 했는데
-
잘까 그냥 0
에휴 이나라가 그럼 그렇지. . .
-
알코올 밈은 치워두고 그래도 이렇게 될 줄 알고 세운 계획이나 다른 생각이 있어서...
-
음모론 제외하면 순수 멍청 이슈 말고는 설명이 안되니까 3
오히려 뭔가 숨겨진 스토리가 있나 의심하게 됨 아무리 멍청해도 이렇게까지 멍청한 짓을 할까
-
기출 모의고사 복습 귀찮으신가요? 모플 한번 써보실래요? 0
안녕하세요 쉽고 빠른 모의고사 복습, 모플의 개발자 라쿠입니다. 모플은 쉽고 빠른...
-
그냥 이렇게 어설프게 한다고?? 꿍꿍이가 있을수도 있겠지만 그것보단 다른 이유가...
-
대체 어느정도의 베일에 쌓여있길래 계엄령을….
-
윤석열 얘기만 4시간 하다가 집오겠네
-
미안해 관심 좀 줄게
-
와....
-
이대로라면 국회에서 윤석열 대통령 탄핵 소추하고 헌재에서 의결하는건 시간문제인거...
-
ㅎㅎ
-
이과인데 고대를 온다면 안암공전의 언덕맛을 볼거에요
-
10시즌급 개노잼 같아보이는디
-
닉변 완 8
민족고대를 달라
-
근혜때마냥 탄핵집회 화력 안나와서 장작 던진건가
-
ㄷㄷ..
-
설치기원1일차 6
컷 10점 정도만 완화해주라ㅎㅎ..
-
대통령이 이정도까지 멍청할 수 있나 여기서 끝이라고..? 서울법대 검찰총장 한사람인데
-
님들이 대통령이면 안누름? ㅋㅋ
-
고대기원4일차 6
계엄메타 잠잠해진 틈을 타
-
음음 비상계엄도 서울대 합격을 막지 못해
-
개인적인의견인데 잠시조정은오더라도 결국1450원까지는찍을거같음...
-
엄 ㅋㅋ
-
9수했다는것도 구라인듯 한 20수는 해야될 머리인거같은데
-
와.. 0
ㄷㄷ
-
대선부터 총선까지 2번으로 도배했는데 살려주십시오
-
내가 282930을 맞출수있을까
-
너무 황당하네 4
너무 wwe같음 진짜 너무 각본같은데 이거 진짜 뭐임 의도를 모르겠음 진짜로
-
이쯤에서 지지정당 ㄱㄱ 10
.
-
국가비상사태라며
-
수학 고정백 만들면 돌아올게오, 아마 금방 올꺼임뇨
-
환율떡상해서개이득이네 라고밖에생각안했었음
-
대놓고 훈련용탄창 가져왔더만
-
예 작년에 있었던 일련의 사건으로 인해서 지문이 부드럽게 읽힌 친구들이 많을겁니다....
-
??
-
니니 말 들을걸 2
곱버스도 국장이규나
너무 대충 써서 정리가 잘 안됨
x=f(t)에서 y좌표는 어떡하나요 그럼
... 뭐 그건... 알아서 잘 엮여 있겠죠
(f(t),g(t),t)를 만족하는...
근데 원이 ㅈ같으신가요
ㅋㅋ 아 그 ㅈ같음을 이해시키려 했다면 제 머릿속에 있던 사고과정에 쓰인 전제를 다 썼어야 했는데 그러질 못했네요.. 너무 대충 써서 ㅋㅋ...
저게 그거 잖아요 작년 6평 가나 지문 중에 (가)지문
? 아닌데요
맞음
‘날아가는 야구공은 물론이고 땅에 멈추어 있는 공도 시간은 흘러가고 있기에 시공간적 궤적을 그리고 있다.’
t는 시간이 아니라 변수입니다. 님은 수능 국어 공부하는 시간을 좀 줄여야할듯. 너무 많이 보셔서 그냥 사고가 그 내용쪽으로 굳어진게 아닌지... 기분 나쁘게 생각하지 마시고 진지하게 생각해보셔야 할 듯? 그리고 본인이 틀렸을 수 있다는 생각도 해보시고...
저 표현 자체가 R^3에서는 점으로 표현된 것이더라도 R^3 X T에선 점이 아닌 직선이 될 수도 있다는 걸 의미하는 건데 T가 시간의 집합이 아니므로 다른 것이다 ㅋㅋㅋ…
국어 공부 하루에 1시간밖에 안하니깐 걱정은 안하셔도 될 것 같습니다.
초딩이 등차수열 합 생각해내고 자신이 대단한 발견을 하였다고 우쭐해하는 모습을 보는 것 같아서 댓글 달았는데, 본인이 말씀하신 대로 국어를 못하셔서 그런지 이해를 잘 못하신 것 같아요.
수학 잘하시고 자부심도 나름 갖고 계신 거 같은데, 너무 거기에 도취되신 게 아닌가 싶습니다.
ㅋㅋㅋ 발악하는게 귀엽노
네 틀린 말이 없어서 더이상 반박 못하시겠다는 뜻으로 받아들일게요 극찬 감사합니다
어느 측면에서 아닌지 설명해주시면 생각해보겠습니다
데이터 분석같은거 할때 쓰지않나
특성을 잘드러내는 변수를 찾는 원리?
뭐라해야하지
음... 그냥 생각나는대로 쓴거라 ㅋㅋ..
실제 미분기하학에서 사용하는 방식과 유사하네요! 좋은 아이디어입니다.
와우.. 전문가분한테 칭찬 받으니까 기모찌하네요 ㄷㄷ...
말씀하신내용을 간단하게 요약해보자면 2D의 어떤 도형이 사실은 3D에서 정사형시킨 도형이다 라는 생각을 하신것 같아요. 이런 아이디어에서 3D 스캐너같은게 나올수있었다고 생각합니다. 더 많은 아이디어로 세상을 밝혀주세요
어려워서 안쓰는게 클듯
오 저랑 굉장히 유사한 생각을..