[화1] 2023 양적관계를 위한 조언 (4)
안녕하세요 수능 화학 강사 김동준입니다.
오늘부터는 화학 반응식 파트로 들어가서
화학 반응식의 “반응량”에 대해 살펴보려고 합니다.
심플하게 생각해서 화학 반응을 ‘많이’하면
반응물도 ‘많이’ 없어지고 생성물도 ‘많이’ 생성되겠죠.
많이 반응하면 전체 변화량 또한 커지게 되는데
반대로 화학 반응을 ‘조금’하면
반응물도 ‘조금’ 없어지고 생성물도 ‘조금’ 생성되며
전체 변화량 또한 작게 나타나게 될겁니다.
그런데 이러한 반응물과 생성물, 전체 변화량은
다 같은 ‘비율’을 가지고 서로 연결되어 있습니다.
반응식이 같으면 몰수 비와 질량 비가 항상 일정하므로
예를 들어 A:B:C=2:1:2 몰수 비를 갖는 반응에서
A가 4몰 반응했는데 B는 1몰만 반응할 수 없겠죠.
생성물이나 전체 변화량도 마찬가지로 반응물과 함께
모두 같은 ‘비율’을 가지고 연결되어 있습니다.
(물론 반응물과 생성물의 계수가 같아서 몰수 변화가
없는 반응의 경우 변화량 파악을 할 수 없겠지만
대부분의 반응이 감소하는 반응이거나 증가하는 반응이고
계수가 같을 경우는 다른 단서를 주니 괜찮습니다.)
정리하면,
(반응량 비)
= (감소하는 반응물 비)
= (증가하는 생성물 비)
= (감소량 또는 증가량 비) 입니다.
그럼 문제에 적용을 해볼까요.
2021년 3월 학평 화1 20번입니다.
실험Ⅰ, Ⅱ에서 생성물 C가 각각 22g, 33g 생성되었으므로
반응량 비 2:3이고 따라서 반응물 A, B도 각각 2:3으로
반응해야 하며 전체 변화량도 2:3임을 추론할 수 있습니다.
실험Ⅰ에서 A가 모두 반응할 수도 있고 B가 모두 반응할 수도
있는데 생성되는 C가 22g이기 때문에 B가 28g 소모되는건
질량 보존 법칙에 위배되므로 A가 8g 모두 반응하고
B는 28g 중 14g이 반응해야 합니다.
반응량이 2:3이므로 실험Ⅱ에서는 A가 12g, B가 21g 반응하고
A가 남으므로 B는 모두 소모되어 y=21을 얻을 수 있습니다.
실험Ⅰ,Ⅱ의 반응 전과 실험Ⅱ의 반응 후 부피비를 구하면
이고
실험Ⅱ에서 반응 전 후 변화량이 –1.5이므로
실험Ⅰ에서 반응 전 후 변화량은 –1이어야 하고 (2:3)
따라서 실험Ⅰ의 반응 전 후 부피비는 5:4가 됩니다.
부피비가 5:4인데 질량은 일정하므로 밀도비는 4:5이고
x=90을 알아낼 수 있습니다.
(3개를 한꺼번에 비교하긴 했는데 실험Ⅰ,Ⅱ 반응 전
부피 비 5:6, 실험Ⅱ 반응 전 후 부피 비 4:3을
각각 찾아서 연결해도 됩니다.)
두 번째로 2021학년도 대비 6평 화1 19번입니다.
실험Ⅰ,Ⅱ에서 변화량이 각각 –0.5V, –V이므로
반응량이 1:2이고 반응물 A, B는 각각 1:2로 반응합니다.
실험Ⅰ에서 A가 2n몰 모두 반응하면
실험Ⅱ에서는 A가 4n몰 반응하여야 하는데 모순이므로
실험Ⅰ에서 B가 n몰 모두 반응하고,
실험Ⅱ도 마찬가지로 B가 3n몰 모두 반응하면
실험Ⅰ에서 B가 1.5n몰 반응하여야 하므로 모순이죠.
따라서 실험Ⅱ에서는 A가 n몰 모두 반응합니다.
이를 이용하여 실험Ⅱ의 반응식을 쓰면,
실험Ⅱ | |||||
반응 전 | n | 3n | |||
반응 | -n | -2n | +2n | ||
반응 후 | 0 | n | 2n |
이고 계수 b=c=2를 얻을 수 있습니다.
실험Ⅲ에서 A가 xg 남는다는 조건이 있으므로
B는 모두 소모되고 이를 통해 질량 반응식을 쓰면,
실험Ⅲ | 2 | 2 | |||
반응 전 | xg | xg | |||
반응 | - xg | -xg | + xg | ||
반응 후 | xg | 0 | xg |
이고 반응 질량비 1 : 4 : 5를 얻을 수 있습니다.
질량비를 계수비로 나누어 분자량비 2 : 4 : 5도
얻을 수 있죠.
또 계수비를 질량비에 적용시키면
실험Ⅲ의 반응 전 부피가 인 것도 알 수 있는데
실험Ⅲ의 반응 전 부피를 알아내는 부분은
설명이 좀 길어지니까 다음 글에 이어서
말씀드리도록 하겠습니다.
실험Ⅱ는 반응 전 후 4V → 3V 이고
실험Ⅲ은 반응 전 후 → 이므로
반응량이 –1 : - = 8 : 9임을 알 수 있습니다.
따라서 생성된 C의 몰수 비도 8 : 9가 됩니다.
이처럼 ‘반응량’을 활용하면 반응식을 다 안쓰고
문제를 해결할 수 있으니 잘 정리해두면 좋겠습니다.
실험Ⅲ의 반응 전 부피를 알아내는 파트는
두 가지정도로 설명이 가능한데
다음 글에 논리 하나를 말씀드리면서 정리해보고
그 다음 글에 또 다른 논리 하나를 말씀드리면서
다른 방법으로도 정리를 해보려고 합니다.
오늘도 긴 글 읽어주셔서 감사합니다 ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6,9월 있겠고요. 사설시험 알아봐야겠고, 일반 재수학원에서 교육청 시험도 응시...
-
내년 3월 회기동에서 만납시다
-
혹시 과 상관없이 학교 간판만 보고 간다하면 이 성적에 어디까지 가능할까요?
-
나무위키러버 직관딸깍 스타일이 잘맞음 몰라도 못푸는 건 아닌데 모르는 사람이...
-
냐옹
-
아는 동생이 자기 수시때메 물어보던데 이거 어디가야됨? 걔 집이 서초구라 아마...
-
명장면 보고 울던 여성분 말고는 얻은게 딱히 없음
-
질문받아요 10
경북대까지1시간이나남아서 심심하기에질문받아봐요 선넘질받도괜찮아요
-
이라는 옆동네에서 익숙한 자료를 봄 ㄷㄷ (나보다 연계 적중 내역 더 잘 정리했네)...
-
키 3
184 정도면 어디가서 꿀릴일은 없겠죠??
-
ㅅㅂ 정상화하라고
-
헉...
-
미국 전 대통령 지미 카터 현재 만 100세 동시대 사람인 헨리 키신저는 작년에...
-
컴공?
-
[1] 눈썹정리 해라 자신있으면 유튜브보고 스스로 해도 되고, 아니면 브로우샵같은데...
-
작년엔 최저 6광탈이라 예비도 못받았는데 올해는 4개는 무조건 받을거라 긴장이 매우 많이됌...
-
부산대 논술뭐냐 0
기출 지금까지 다 80점댄데 오늘 왜 1번은 공통이고 2 3번은 쌩 기하냐? ㅅㅂ...
-
오류있을수도 있서요 처음만들어보는데 재미있네용
-
외대 0
이정도면 어느과까지 쓸 수 있나요??
-
원과목 투과목 연관성 10
물1 물2 : 원 안하면 못함 화1 화2 : 몰라도 큰 지장 없음 생1 생2 : 아예 상관없음
-
작수도 화작 다맞으면 1컷 88이었는데 수학에비해 국어 1컷 난도가 좀 높긴 한듯...
-
엄마가성형시 집에있는자산 한푼도안물려준다 했었음... 그래서일단은포기함
-
수탐 만점급으로 잘본다고 했을때 최대치가 어디임요
-
화작 기하 윤사 사문 어케 생각하심? 그리고 각 과목 등급정도 받아야 갈수 있음?
-
투투하자~~ 2
이제 진짜 투투할만하다 아님? 원원 선택지가 생지밖에 없는데...이제
-
인하 공대 10
인하 공대 상위과 (텔그기준 95-99프로) 건국대 ,시립대 상경계열 (시립대...
-
잘생기면 좋은거지 뭐 못생긴게 절대적으로 나쁜건 아님 상대적으로 불리한거지
-
고세약 논술 0
잘생긴사람 많네..
-
어떰?
-
그래도 외모메타가 14
키메타보단 낫다...
-
안녕하세요 crux팀 환동입니다. 제가 국어,수학 등급컷은 이미 예측을 해드렸고,...
-
고대 세종 도착 4
뭔가 휑하다 다들 ㅎㅇㅌ
-
찐 자기관리법-기본 18
1. 살빼라 딱 bmi 기준 정상의 정중앙에 오게 살빼셈 그러면 ㅈ빻아도...
-
현타 ㅈㄴ 올듯 그래도 주변에 재수 크루원 많아서 그나마 멘탈관리는 되는데 새학기...
-
ㅈㄱㄴ
-
축제 때 다같이 무대 하자네 ㅅㅂ 존나 하기 싫은데 ㅡㅡㅡ 강제라서 일주일동안...
-
옯붕이들 맛점.jpg 11
-
쌍지할려햇는데 일반사회 끼우는게 유리하대서 고민중 경제랑 윤리는 ㄴㄴ
-
밖에 춥나 10
와이셔츠에 얇은 숏패딩 하나 입고 가도 괜찮겠지..
-
어디 약대든 졸업하면 다 같은 약사라는 게 맞말이긴 한데 00대학교 약학과...
-
영어 좀 웃기네 5
당연히 점수만 보고 3점 두개 나락간줄알았는데 2점을 3개틀렸네
-
이건 미쳤다 싶을 정도로 못생긴사람은 본 적 없는데 진짜 인터넷에서만 간간히 본...
-
e 발음팁 6
경상도 토박이인데 e는 히이익! 할 때 ’이‘느낌임 중국어 배워본 사람 기준으로 4성 느낌임 “è”
-
못생겼으면 2
성형이라도 하셈 호감상까지 만드는건 ㅆㄱㄴ임
-
난 옛날부터 멘탈이 뭔가 생활에 영향을 많이 주는 것 같아서 지금 내 정신이...
-
사투리 못고침 2
ㅇㅇ 번외로 도란 사투리 가끔 쓴다고 하면서 말 시작부터 사투린거 귀엽더라 본인들은...
-
내년 이맘때쯤엔 1
웃을 수 있었으면 좋겠다...
-
물리안하면됨 일단난이제실천중
매번 정말 감사합니다 ㅠㅠ 손도 못대고 있었는데 해결 할 수 있을거같아요
다행이네요 ^^ 조금씩 연습하셔서 좋은 결과 있길 바라겠습니다
선생님 여기 계셨군요 ㄷㄷ