20. 통계 문제 하나 풀고 가세요
ans.pdf
답은 첨부파일로 확인해주세요.
오르비 검색창 #제헌 으로 검색하시면
또다른 문제도 풀어 보실 수 있습니다. (현재 일부 문제는 복구중입니다.)
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8521290&showAll=true
-교재를 무료로 지원합니다. 위 링크의 내용을 확인해주세요.
-제헌이 모의고사 판매 링크
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그게맞지
-
우린 뜨겁고 눈부셔
-
야동봐도 개노잼임..
-
체감상 어느정도 금액임?
-
1컷:84 2컷:76 3컷:69 ㅠㅠ
-
레어뭐사지 4
덕코 더 모아야하나
-
국어 두문제만 더 맞았으면좋겠다 제에엥에에엥에에발 나 다 확신가지고 풀었단말야
-
선넘질받 3
ㅇㅇ
-
그래
-
비재원생받아주는데 있나요?
-
오랜만에 보는 메타 전 170 65 15요
-
아무래도 음악 취향이란건 혼자 있는 시간에 형성되는 경우가 많다보니, 단순히 음악의...
-
육군 일반병은 0
군수 많이 힘드나요..?
-
셔틀 되는 독재 있을까요? 현강으로 단과 몇개 들으면서 대치쪽에서 독재 다니기로...
-
반갑습니다. 6
저는 출근하고 있습니다.
-
7월 입대 4
공군으로 하고 싶은데 99점에 04년 11월생 ㄱㄴ??
-
아니 어린 사람을 저렇게 당당하게 추행하고 희롱한다고??? 저스틴비버가 모욕적이라고...
-
엌덕하죠
-
건강>돈>외모>능력>인간관계 이게 정배인듯
-
막혔나요?
-
미적 77인데 3
걍 3이겠네 ㅠㅠ
-
질문받습니다 12
국어 원툴 건대 휴학 군수생입니다
-
원내생 진료 받으려고 하는데 이거 괜찮은거 맞겠죠..? 이런거 안해봐서 모르겠슴다...
-
진로가 고민이 돼서 적어봅니다. 개인적으로 생각하는 각각의 장단점은 설공 장점: 제...
-
만족하셧나요 재수생 라이브반으로 올해 합류할까한느데
-
질문받아요 10
선넘질받도받아요
-
한참 멀었군
-
그냥 부모한테 돈 달라고하면 되는거 아닌가
-
사실 따뜻한 사람인 거 아님뇨? 자기만 보기 아까워서 남까지 보여주고 싶어하는 따뜻한 사람인거임뇨?
-
키 177인데 4
거북목,굽은등,머큰어좁이라 흠
-
아니 그럼 지금 최초합 개 씹안정에서 불합권까지 갈 수도 있음? 6
재수하기싫은데
-
47나왔는데 그냥 문해력으로푸는 어이없는 문제 1개틀ㄹ림 필수입니다..
-
성균관대 특 4
송중기 차은우 공부 좀 치는 S급 알파메일들 전용 대학
-
아악 나가기싫어
-
예비 고3 질문 1
수시입결 볼때 최저잇는 교과전형이 만약 70퍼 컷이 2.1이라 햇을때 추가합격...
-
169cm의 4
미모의 킴민지 양
-
빨간약 한사발 거하게 마시고 일상으로 돌아가게
-
지1 47 0
98은 뜨려나... 등급컷 여론이 자꾸 오르네
-
진짜 간당간당한거같은데 불가능이겠죠?
-
모두 조용.
-
허경영
-
누가 밀었냐 3
하
-
인간의 본능을 자극하는건 외부의 아름다움일뿐..
-
쌍사 선택 2
올해 수능 생윤 사문 선택했습니다. 늘 1등급이던 생윤에서 미끄러지고 1년동안...
-
남자들 누가 더 좋나요
-
밖에서 읽기 눈치보여요
-
하는법률만들어야된다고생각해요
-
교대 가면 진짜 쉽게 함 상상이상으로 예쁜여자만남
-
키특 1
169랑 170이랑 179랑 180이랑 진짜 차이 하나도 없는게 맞는데 숫자때매 차이 심해보임
하아하아.. 1빠..ㅎㅎ
좋은문제 풀어볼게요!!
ㅎㅎ
좋어용 헝헝
감사용
감사요... 깔끔합니다
앞으론 더러운 문제좀 내야겠네요 ㅎㅎ
예?? ㅋㅋㅋ 아닙니다
*@}>->----
크..좋다
^^
항상 감사합니다ㅎ
우!
진!
충!
깜사합니다
*^^* ^_^&
문제 좋네요 ㅎ
감사하 합니다
감사합니당~~ 님모의고사오늘삿아요ㅎㅎ
^^
문제를 눈으로 풀어보는 것도 좋은 습관인가요? 항상 올려주시는 문제를 버스 안이나 자기전에 눈으로 풀어보고있어요 감사해요ㅎㅎ
시험장에선 그럼 안되겠지만... 평소에 그렇게 하면 시험장에서 도움 많이 될거같네요
걍 n1부터 다 넣어보면 되는건가요?
아니면 다른풀이가 있는건지..요?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
표준화와 대칭성을 이용하면 어떻게 풀수있는건가요?
f(8)=0.24 이므로 g(n) ≥ 0.47인 n의 값을 찾으면 돼요.
g(n)=P(n-4 ≤ Z ≤ n-2)
이므로 n=2, 3, 4 입니다. 대칭성을 이용한다는 것은
n=2일 때, g(2)=P(-2 ≤ Z ≤ 0)
n=4일 때, g(4)=P(0 ≤ Z ≤ 2)
여기서 이용된 거구요
n을 하나하나 넣어서 풀었는데 맞는 건가얀?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
예를들어, 답이 n=10, 11, 12였다면 푸는데 오래걸리셨을거에요 ㅎㅎ
문제 고퀄이네요ㅎㅎ
잘풀고갑니다.
^^&
이런형태 문제는 또 처음보는듯 ㅇㅅㅇ...
암튼 잘 풀고 갑니다 ㅎㅎ
^^& 2012 9평 형태 조금 바꿔본거에요
엌 기출공부 안한거 티냈네 ㅋㅋㅋ
죄송한데 ...
n이 2하고 4일때는 알겠는데 n이 3일때는 어떻게 되는건가요??
종모양의 대칭형태니까 확률이 0.47보다는 클거기 때문에 n=3도 답으로 골라줘야합니다.
확률 자체를 구하는 방법도 있긴 하죠 ㅎㅎ -1에서 1이니까 0.68 이겠네요.
위의 댓글에 g (n) 확인해보세용
크거나 같은건데 같다라고만 봣네요 감사합니다^^
g(n)≥0.47까지 구하고 표보고 바로 n=4 넣은다음 정규분포 그래프 그려서 대칭성 판별했는데 너무 직관적인가 ㅂㄷㅂㄷ
괜찮습니다.
스무스하네여
제헌님 n=1일 떄는 판별할 수 없지 않나요?
네??
g (n)>=0.47 에서요ㅎㅎn=1일때는 정확한값을 모르지않나요?
네 n=2 3 4 가 답이에요