수학 자작문제
29번 문제.hwp
처음으로 수식으로 만들어 봤네요
나형 30번으로 만들려했는데 생각보다 쉬워졌네요.
오류있으면 지적 좀요
(가)조건 f 와 g는 역함수로 수정할개요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 ㅈㄴ 불편해 보이는데
-
제가 너무 빨리 보는 것도 같은데...긴장되어서 넘기면 하나도 기억 안 나요 일단...
-
아야 피 철철 남..
-
독-1개 문-5개 문학 진짜 죽이고싶네
-
오늘 점심 6
포켓먼빵
-
어려운거 맞나요? 라이프니츠 나오고 일원론 이원론 충전기 고전시가에서 개 나오는 그...
-
올해는 공부 유기해서 현역수능보다 못 볼 각인데 왜떨림?
-
ㅆㅂㅅㅂㅅㅂ 마지막 회차에서 드디어 커하로 95를 뚫음
-
프사 냅다바꾸기 4
켄카네키 오레키호타로 오카룽 레츠고
-
괜찮은가요 ??
-
생명1 검더텅 1회독 수특수완한번씩 풀엇고 비유전은 ㄱㅊ긴한데 그래도 기출 한 번...
-
모의고사 국어 백분위 94-96 수학 백분위 94-96 영어 3-4등급(가끔 턱걸이...
-
아예 없나...작년에 저격먹었으니
-
오늘이 벌써 2
수능 전 마지막 주말이다 오르비언들 올해 다같이 수능 존나 부시고오자
-
본인 그래서 예전에 심지어 화1 서바도 번개장터에서 현강러한테 원본 택배 받아서 풂...
-
수능이 4일 남았다는건 15
07이 현역 되기까지도 4일 남았다는것 시간 왤케빠름
-
서바 17회 쉬웠던 것 같은데 88..
-
정당이 구성원의 이익보다 공익 중시해요??
-
굉장히 빡빡함
-
https://orbi.kr/00069395759/%5B%EC%A0%95%EC%B9%...
-
방금 서바 27회 풀었는데 72떠서 멘탈 개나감
-
지구 화석 0
현생누대에서 살던 생물 중에 여태까지 살아있는게 식물들 말고 또 뭐가 있어요?...
-
오리비티콘 이거 19
꽃다발인줄 알았는데 심장이였음..
-
햇살도맞아주니 기분이한결나아져요
-
후하후하
-
수특 연계라 엄청 쉽게 풀었는데 다들 어렵다고 하네요 저만 가 나 14번이랑 법지문...
-
강이분 독서3 내용 읽어보기만하고 수특 문제는 풀지 말까요? 시간이 얼마 없네요.
-
마지막 수능 때 밖에서 피다가 지나가던 감독관한테 개닦여서 멘탈나감
-
대체 이 시기에 뭘 필기하길래 삼색볼펜딸칵을 2초에 한번씩하냐 아진짜로
-
(본문 독해 전 좋아요는 큰 힘이 됩니다/-/) 안녕하세요 :) 디올러 S (디올...
-
지금 ㅈㄴ 자살머려움
-
강k 국어 1
강k 국어 10회 혹시 질문 답변 가능하신 분 계신가요? 풀땐 그냥 평소처럼 푼줄...
-
히나만 풀겠어요
-
애미가 없노 0
ㅅㅂ
-
러셀 손우혁쌤 0
러셀 손우혁쌤 많이 어려우신가요???.. 지금 고2인데 고2 10모 백분위...
-
문제를 쉽게 줘서 망정이지 이걸로 어렵게 내면 ㄷㄷ
-
이시기 쯤 2
보통 뭐하세요?? 매일 실모 할당치 풀고 휴식 이러면되나여 국어연계나 더 읽을까...
-
매년 수험생의 행동패턴이 달라지지 않아
-
화작입니다
-
유빈 4
트리플에스 공유빈
-
이 그림은 시험실 감독관이 들고 오는 문제지 봉투에도 인쇄되어 있음. 한 시험실에...
-
1컷 50감?ㅋㅋㅋㅋㅋㅋㅋ
-
국어 수학 영어 한지 세지 56 76. 2. 50. 50 인데 이거 그대로 수능까지...
-
생윤황들 주목 2
롤스가 시불의 대상에서 세제법도 포함시키나요?? 테일러가 모든유기체들은 상호책임을...
-
인+동인가요 아니면 인간만인가요
-
그리고 문학의 정보 경중이 보이시나요 이건 중요하고 이건 세부정보다 이게 파악이되서...
-
아니 ㅅㅂ 5
설맞이 2-2 풀었는데 잇올에서 답지를 시즌 1걸 가져와서 못매기네 와 진짜 병신인가
-
올해 다시 회귀한다고 하는 거 봐서 높으신 분들이 좀 관심이 떨어지셨나 이러다가...
-
현역 수능 질문 5
연필 몇개 챙기라는 사람들 있던데 샤프는 가져가면 안되는 건가요? 그리고 따로...
-
마키마 누나가 주물러줬으면 좋겠다
캡쳐 하니까 이상하게 되는데 파일다운받아서 봐주세요
가물가물한데 ab관계식 찾아서 아래 식에 대입한다음 최댓값 찾는거 아니에요?
아래식만 대입하면 안나올거에요
g 를 1차함수로 두고 풀면 되나
네
문과문제 자주 올려주세요 감사합니다ㅜㅜ
근데 푸신분이 없..
공부끝나고 풀어볼께요!
왜저는 답이 안나오죠..해설플리즈....
어디까지 푸셧나요
가 조건에서 f랑 g가 역함수이고 나조건에서 나조건을 만족하는 정수가 0,1,2 라는걸 구했는데 그이후부턴 생각이 안나여 엉엉
ㅋㅋ 그럼 그대로 대입해버리시면돠죠 f가 역함수존재니까 항상증가하고 g보다 작은범위가 곧 y=x보다 작은범위니
f (2)<=2 , f (3)>3 해버리면 조건 만족
아..ㅋㅋㅋㅋㅅ혹시 문과 수험생이신가요..?
네 근데 친구들이 다 수포자라 오르비올리는데 아무도 안풀어주시네요 ㅜㅜ
ㅋㅋㅋ저도 문관뎈 수학 실력이 덜덜 하심..한수 배워갑니다ㅜㅜ공부 열심히 해야겠네요
감사요 열공하세요
전 그냥 g조건정도만 찾아봤는데, f가 역함수존재를 안할수도 있지않나요.
(가) 식만족하려면 f (g (x))가 항등함수가 될 수 밖에 없지 않나요 그럼 무조건 역함수인데
g(x) 자체가 x 가 되고 f(x)의 대칭축 왼쪽이 그려지고 저 식들을 만족시킬수도 있는것같아요
아.. 그렇네여 그럼g (x)가 x가 아니다가 추가되거나 f (g (x))=x로 바꿔야 한건가여
역함수가 존재한다를 의도하고 내신거라면 그렇게 하시면 될것같네요ㅎㅎ
제 방식대로 조금 끄적여도답이 나올것같았거든요. 계산하다가 그만뒀지만..
의도한 답은 21이 아닐까 싶긴한데 확실히 납득은 안 가네요
아 납득 갔어요 ㅋㅋ 21 17/4 맞나요
맞아요 어디가 흠결이 있는건가요??
원래 납득안가시던게 대칭축 0보다작다를 안하셔서 그런건가요?
그나저나 수식다루는게 너무어렵내요 처음해봐서 그런지
아뇨 다 따졌어요 ㅋㅋㅋㅋ 그런데 따질게 생각 보다 있네요 눈치빠르몀 따질것도 없이 바로 나오고요
제가 납득 안 갔던게 b<0일때 최댓값을 안 가질 보장이 있나 했던건데 따져보니깐 맞더근요 ㅋㅋ
아 b <0이면 최댓값을 안가지게 되는건가요? 그럼 해당부등식 영역이 그냥 1/3~1/2까지 쭉 직선형태인건가요?
원래 삼각형이라 생각했는데
아마 b<0에서 a<1/2여서 최댓값이 정의가 안 돼요
b=0이면 1/3
b <0일때 최댓값이 없다는게 어떻게 나온건가요? f(x)=x D>0?
실력이 부족해서 미처 생각하지 못했네요
D로 안 따졌구여 식을 바탕으로 해서 대략적인 값 넣어보면 a^2+(b+2)^2을 최댓값을 만족시킬수 없고 부등호에 같다가 없어서 최댓값 자체가 찾아내는게 안 되더라구요 물론 답은 이상 없었어요
아..글쿤요 엄청 내공이있으신듯 전공이 수학이신가요
네 요번에 수학과 들갔어영
그러시구나.. 저도 수학과가고싶어여 왜 문과를 왔는지 .. ㅜ
ㅠ 지금 전과하기엔 늦은감이 있기에.. 진로 확실히 정하세용