[박수칠] 미분계수와 함수 극한의 관계에 대하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개충격머금 ;;;;;;
-
혹시 나중에 회계사나 공무원도 하신다면.. 연락을... 미시경제학은 좀 쳐요 이미...
-
밐3 1
-
그리고 수능치면 다맞으면 최대 어디감? 화작 미적 정법 경제로 간다하면 베이스는...
-
맞팔9 4
ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱ빨리 해줘
-
일출 시간대인 듯요 아침 7시에 어둑어둑 수준이 아니라 어두컴컴한건 1~2월 아니면...
-
긍정적인 마인드로 351일 공부하기 오늘의 소확행 : 드디어 올해치 예비군 끝 하필...
-
ㅈㄱㄴ
-
전 주량 0.3병인 여고생이라 진짜모름
-
정법 질문 4
노베인데 12월에 코어버전 완강한개로 개강한다는데 그거로 봐도 상관없나요? 1월에...
-
전 1시간 반 ~ 2시간 하면 약간 몸이 근질근질해지면서 오르비 들어와서 눈팅하다가...
-
눈이펑펑 2
휴강하면 좋겠다
-
과제를합시다 7
D-4 근데이제 day가 아닌 h인
-
원래 73kg 였는데 학기 시작하고나서 5kg 증량되서 돼지됨...
-
지원도안해주고반대도극심하고 그냥 아무대학가라고하면 그냥포기하고 아무대학진학하세요?...
-
What's up, guys? This is Ryan from Centum...
-
근데 레즈아님 혹은 얼굴 이슈로 입밴당하겠지
-
*주의* P.I.R.A.M 국어 생각의 전개를 구매하신 분들은 2권 마지막 지문으로...
-
지금은 해설지 작업 중인데 혹시 필요하신 게 있다면 적극 반영할게요
-
일좀해라 좆성
-
1. 국어 김승리T 올오카 독서/문학 -> ~~~~ ———————————————...
-
한 4년 좀 넘은듯
-
표점 제발 142라도 주세요
-
그냥 선호도조사
-
조때따 3
갑자기 오글거리는 대사하면서 키스하네.엄마 어떠캄.
-
인생 첫 40도 위스키 도전 과연 3일 연속 술을 마신 사람은 살아남을 수 있을까요
-
사탐런 안 막으면 공대 갈거면 사문지구가 제일 낫겠죠?
-
생질 개때잡 세젤쉬 중에 수학 개념 추천 부탁 드립니다 0
수학 개념 노베이스 라서 개념인강 다시 들어야 하는데 생질 세젤쉬 개때잡 중에서...
-
왜 기억이 없지 이렇게 많이 오나 11월에
-
한 쪽 눈 초점이 안 잡힘.
-
ㅠㅠ 본1 인턴이랑 비교해주실 의사분 찾아요 ㅠㅠ
-
캬 3
대 하 니
-
설경 VS 경한 1
선호도조사 ㅇㅇ
-
십ㅋㅋ
-
그냥궁금해서
-
포케 맛있다 8
앞으로 저녁은 포케다
-
메가기준으로(96) 백분위 계산해보니까 295나와서 에피 안되네요 :P
-
내일 점심 순대국밥
-
매우매우 귀찮.. 그래도 가야겠죠?
-
늙은이들은 비켜잇
-
뀨뀨 16
뀨우
-
하루종일 침대에 누워서 신생아처럼 오르비만 한 보람이 있네요
-
수학 거의 노베인데 어떻게 공부해야 할까요? 어떤 문제집을 사야하는지, 어떤 인강을...
-
캬
-
9일더기다리라고 0
미친거아님뇨? 빨리빨리해주셈뇨 어차피이의제기안받아줄꺼면서
-
28학년도 수능은 문이과 완전 통합이잖아요. 그리고 고교학점제 시행한 애들이 보는...
-
뭔 길이 다 빙판이야
-
무지성으로 상대한테 죽어주고 타워 민 뒤에 자기는 운영하는건데 우리팀 뭐하냐고...
-
설카포연고 의치한약수 그리고… ‘건’
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^