심심한 기출분석 (230615)
이 문제를 통해 2가지의 배울만한 마인드가 있습니다.
1) 수능 문제
수능 문제는 수능의 소요시간과 난이도에 알맞은 적절한 규모의 문제를 설계해서 만든다는 것입니다.
풀 수 없는 문제를 출제하지 않습니다. 어떻게든 문제를 풀 방법이 있다는 걸 기억해줘야 해요.
2) 작은 문제를 먼저 풀자
주어진 문제보다 더 작은 문제가 무엇일까 생각해보고 거기서부터 문제해결의 실마리를 찾으려 하는 겁니다.
수학에도 실험이 있고, 문제가 풀리지 않으면 실험을 진행해봐야합니다. 그럴 때 사용할만한 많은 실험방법 중 한가지입니다.
3) 문제 확인
수열에 대한 기본적인 정보를 확인해보면, 한 번 같은 항이 나오면 수열이 주기를 갖고 반복한다는 것입니다.
그 외에는 모르는 수열이니 조금 나열해봅시다.
여기서 처음으로, k=1일 때와 그보다 클 때를 나눌 상황이 온다는걸 알 수 있습니다.
많은 문제를 풀어 정말 훈련이 잘 된 상태라면, 사실 이 시점에서 이미 수열에 대한 판단을 끝낼 수 있습니다만,, 그리 쉬운건 아니겠죠.
여기서부터 경우를 나누기 시작한다면, a_22까지 가는 과정에서 경우를 얼마나 나누게될 지 막막한 심정이 들 수 있습니다. 그 과정을 전부 다 한다면 문제를 시간 안에 풀어내기가 매우 힘들어지겠죠.
그러나 위에서 말했다시피 문제는 적절한 시간 안에 풀리게 되어있습니다. 작은 문제로 실험을 진행해봅시다.
I) k=1.
II) k=2.
III) k=3.
즉, 수열은 주기가 2k+1인 주기수열임을 알 수 있고, 따라서 2k+1로 나눈 나머지가 1인 항이 0이 됨을 알 수 있다.
즉, 22를 2k+1로 나눈 나머지가 1이여야하므로, 2k+1=1,3,7,21. => k=1,3,10임을 알 수 있다.
4) 문제의 출제원리
이제 이 문제가 어떻게 만들어졌는지 알아보자아
문제는 결국 0으로 시작하는 주기수열을 만들고 싶엇던 것이다.
0<a<b인 a,b를 생각하자.
0,a,a-b,2a-b,2a-2b,...,0 (0이 처음으로 나온 시점)으로 a와 b를 더햇다 뺏다 반복하는 수열을 생각하자.
이 때 a-b, 2a-2b, 3a-3b, ... 등등의 홀수항들은 절대로 0이 될 수 없다.
짝수항들만 따로 빼서 관찰해보면,
a, 2a-b,3a-2b. 로 공차가 (a-b)인 등차수열을 이룬다.
일반항을 작성해보면 즉, (a-b)n+a라는 감소하는 직선이다.
n이 자연수일 때 (a-b)n+a가 0이기만 하면 원하는 수열을 만들 수 있다. (직선은 계속 감소중이다)
n=a/(b-a)가 자연수이면 되겟다. 그 방법들 중, a=1/(k+1), b=1/k.을 채택한 것이다.
5) 변형
4번을 잘 보면 간단하게 문제를 어떻게 변형할 수 있을 지 생각해볼 수 있다. (직접 해보기)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아깐 우울했는데 지금은 거의 조증 수준으로 고양()되어있음
-
오늘 밤 다시뵈요
-
롤체가 재밌는듯 내가 원챔유저라그런가..
-
새르비 장점 1
특정 당할 확률 적어서 좀 더 솔직해져도 됨
-
10년안에 인공지능 발전해서 특이점오는데 그냥 놀아도됨 당장 학원다 그만두세요
-
너무 어렵고 가르쳐줄 친구도없어...
-
새벽 헬스완 4
아 유산소 개힘드네
-
배고파 0
비냉먹고싶어..
-
썬크림 바르고 잘뻔햇네 휴
-
댓글은 하나도 없는데
-
맞팔구 12
은발테닝테두리를 받고 싶도다.. ?
-
만약 3월 중순에 들어간다하면 첫 달 금액을 어떻게 계산함..? 똑같이 한 달로...
-
72점 뭐지 필기 이리 쉬운거였음?
-
비냉먹고싶어 5
이시간에 배고파지면 개노답인데
-
마음이편안해진다
-
이모 잘게 5
진짜로
-
레어 좀 사줘 5
부탁좀할게너무거슬려자꾸나따라다니는찐따친구같아
-
늦잠 잣다 4
근데 늦게 잠든거라 상관없다
-
학식에 냉면나옴 2500원임 곱빼기가 +500원인가 그러는데 이건 대야에 나옴
-
미적은 신이구나 2
어제배운 미분법으로 이게 증명가능하네 캬
-
어쩌다 도입됐는지는 잘 모르겠지만 한국은 나이로 줄세우는거 꼭 해야하는데...
-
뭐지 4
뭐엿을까
-
있음?
-
각ㄱ각 12월말 1월초에 태어나면 1~2주차인데 그 차이때매 언니오빠형누나되눈게신기하지않냐
-
곧생일인데 4
ㅈㄴ 기대 하나도 안된다
-
이별하지않기 9
잘자라
-
너무 젊음만 멋지고 찬란하게 묘사되고 어렸을 때 처리하거나 결정되는 일이 너무...
-
을의 연애를 한다. 근데 이거 ㄹㅇ임. 갑의 연애를 하고싶은사람들은 갑질의 대상을...
-
1일 1스벅 사줄 수 있음
-
고딩때가 좋앗던거같다 11
그땐 걱정이라곤 대입밖에 없었는데
-
왜 없지..? SRT 원래 세시에 취소표 푸는거 아니었나
-
기능 3수 도로 3수
-
사문 8
불명+림잇 동시에 할건데 낫배드? 배드? 개념 진짜 개빡세게 잡게
-
기습 ㅇㅈ 27
어릴 때긴 한데 너무 귀여움
-
내일 첫 기능 연습인데 13
조심조심 마인드로 할까요 아님 아무도 날 막을 수 없다 마인드로 갈까요?
-
그냥 내 앞에 누가 있냐 없냐도 아니고 내가 cc냐 bb냐로 결정되는거니깐...
-
결과가 확실한 성취감+무아지경에 빠지는 느낌이 좋음 어쩌면 생산직이 내 적성일지도...
-
투표ㄱㄱ 3
배성민 드리블 vs 김범준 카이스 아나토미 vs 현우진 수분감
-
모트독님께서 재조합기 확률을 올려주셔서 완벽한 ㅈ트오버에서 완벽한 악성바이러스로...
-
전적대는 왔는데 다른학교도 보통 오나요?
-
고민이 많아요. 수학 인강 여러 사람 커리 조금씩 발췌해서 따라가는게 정말...
-
이름이 이거 비슷한거여슨ㄴ데 산화당함 맞으면 선착순 한명 만덕
-
ㄱㄴ?
-
명문대 다니는 사람들아 댓글로 내가 명문대 다닌다는 거를 체감했을 때 일 적어보셈
-
내일 할 일을 생각하며 잠에 들기...
-
모고 4등급 받는 사람인데.. 이번에 어삼쉬사 풀려고 어삼쉬사 문제집 샀는데 문제가...
-
그래그래형은방금 캐럿캐럿 99를달앗어
-
작수 통통이 92점이면. 통통이 내에서 상위 1프로는 되나여?
-
얼마 없자늠ㅇㅇ
진짜 고능아
직접 해보기 뭐임
쉬운 과제입니다 흐흐
탈주
대충 읽었는데 저도 비슷하게 풀어요
님ㄹㅇ속독학원수석졸업인가
즉, 수열은 주기가 2k+1인 주기수열임을 알 수 있고, 따라서 2k+1로 나눈 나머지가 1인 항이 0이 됨을 알 수 있다.
즉, 22를 2k+1로 나눈 나머지가 1이여야하므로, 2k+1=1,3,7,21. => k=1,3,10임을 알 수 있다.
이거 처음 풀때 비슷하게 해서 기억에 남음
캬
이샊 ㄹㅇ
왤케잘하지
수학 끄아아악