[자작문제 해설] 수1 삼각함수 문항
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공부한다
-
일주일이 수업일 기준인가요 복영 들어온날 기준인가요
-
천재는 없음 1
잇다쳐도 굳이 신경 쓸 필요가 없음
-
점근선이랑 일차함수만 있으면 만들 수 있을거 같은데 변형이 용이할듯
-
그런데 수시 합격하신 분 왈 정시합격자 두분이 톡방에 들어오셨대요. 선지망 대학...
-
다들 어떤식으로 하시나요 도와주세요...
-
윤성훈 작년 개념만 완강되어있는데 이걸로 1회독 하고 기출 선지정리 하면 어느정도...
-
3모 미적 3
5모 확통 6모 기하
-
일본 여행도 가고 중국 상하이도 가고 토익 900점 이상도 달성해보고 수능도 재미로...
-
근데 뭔가 전 3
남자약사<<하면 뭔가 좀 뽀다구가 안나는거 같은데 저만 이럼? 뭔가 남자가 약사라는...
-
예쁘고 좋은데 펌 비용이 만만찮네 허..
-
중건시경임 6
이과기준
-
갑자기 생각난 건데 책상 크기가 크게 문제가 되진 않나요?.. 두각 책상 좀 작던데
-
왜 클릭?
-
1차추합 가능할까요?
-
우리 학교 은근 높네..
-
뀨뀨 6
뀨우
-
사탐런 이득 9
올해 물지 88 80 나왔는데 과탐 3%가산 기준으로 사탐런 했을 경우 대강...
-
포카도 슬기 좋아해서 슬기만 다 모았음 근데 번장 보니까 슬기 포카 풀세트 3만원대에 팖.. 에휴이
-
고등학교 ㅇㅈ 7
-
포카살말 8
탐나는데
-
나만 그렇게 느끼나
-
예전부터 항상 생각해 왔던...
-
트럼프, 캐나다·멕시코·중국에 고관세 행정명령… 4일부터 시행 3
도널드 트럼프 미국 대통령이 1일(현지시간) 캐나다·멕시코·중국에 고율 관세를...
-
올해 복습은 해야 되는데 뭐로 할까 추천 부탁해요
-
연애는하고싶은데 2
여자랑DM하는게너무귀찮음 어캄
-
과외쌤 진짜 좋아했는데.. 근데 가능성이 없는게 맨날 나한테 야로 부르거나 성까지...
-
단국대처럼 서울 밖으로 이전을 해버리지 않는 한 사회적인 인식으로 자리잡힌 라인이...
-
얼버기 6
-
아침 롤토체스 0
ㅇㄱㅈㅇ~
-
애깅이 일어나또 3
아웅 졸려
-
와 살 ㅈㄴ 찜 10
입대한지 3달밖에 안 지났는데 5키로 찜 ㅋㅋㅋㅋㅋ
-
작년 수능 1주일 전이 떠올라서 손이 벌벌 떨리는중 2
그때 하루하루가 불안해 죽는줄 알았는데 가끔 무의식적으로 떠올라서 불안해지는거보면...
-
도대체가 말야.. 세상의 근원을 알아내는데 왜 관심이 없지 5
이게 같은 인간이 맞나
-
드릴 풀까 말까 2
작년에 뉴런했으니까 바로 할까요 아님 뭐라도 하나 더 풀고 할까요 으으음
-
생활비 벌기가 너무 빠듯해서 수학과외를 하려고 하는데 22수능 미적 백분위...
-
ㅠㅠ
-
지방 사는 재수생인데 지방에서 독학기숙으로 할지 시대인재 대치(낮반일듯)에서 할지…...
-
칼럼 아님;;;
-
N티켓이나 4의규칙시즌1 정도이려나요? 풀어보신분
-
1. 평가원 모의고사 치는 시험장 있는지 (평가원 모의고사 치는지) 2. 밥값...
-
늦버기 1
피곤하고 목이 아프다...
-
의미없나 06인데 그냥 지잡 간호학과 다닐지 자대있는 병원으로 재수할지 고민되네
-
1. (x가 제1원인)->(x가 원인이 없다) : 제1원인이면 원인이 없음 2....
-
이런것만 모아두는 책 없나
-
고등학교 ㅇㅈ 5
평반고인듯
-
공부 열심히해서 0
씹덕의사 될거야
-
미적분하는데요 개정시발점으로 사면 수1,수2용으로 대수랑 미적분 1사면 되나요?...
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)