우주
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf
Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.
설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.
Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.
Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.
원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)
기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울 인프라랑 다른데랑 갭이 너무커
-
제목 그대로입니다.. 최저러인데요 인강을 듣기가 좀 그렇고 인강에 그렇게 집중도...
-
ㅋㅋㅋㅋㅋ 아웈ㅋ
-
진짜로 기계공학과 과팅 들어오면 약간 애들이 의심하고 봄 ㅋㅋㅋㅋㅋㅋ 거짓말같지?
-
쫌만 수능 못봤으면 고대나 가천대인데....
-
넷플릭스 ON 7
바로드가자잇
-
리트인가 뭔가 노숙굴 들어가려면 그게 필수인데 공부해도 안 오른다며? 근데 아싸리...
-
22살이라니..
-
나는어떡하죠호 4
아직서툰데헤
-
중앙댄데 그냥 스카이 높공이나 메디컬이 너무 갖고싶음 약간열등감 ㅇㅇ 이런 이유로...
-
성실하게 답변해줬는데 별점 0점을 주네 미친놈인가
-
아니 이게 뭐야 15
그냥 가게를 털었네
-
현역분들 1
보통 공부 몇시까지하세요
-
어차피 요즘 수능은 점점 쉬워진다(나형 2등급을 받으며) 아... 그저 가천대생도...
-
스블에 문제는 다 어려운 문제밖에 없는것 같더라고요 그래서 조금 쉬운 문제...
-
근데 현우진이 그렇게 가르치면 문제 없는 거 아님? 4
걍 그렇게 때우고 넘어가면 되는 거 아님?
-
한다에 투표하시려면 댓글을 다시고 안한다에 투표하시려면 100덕을 보내세요
-
231114 ㄱㄴㄷ문제에 괸해 하고싶은 말이 좀 있는데 해도될까요 극한값으로 정의된...
-
전국의 기괴경악과 학생들 다 모여라. 우리의 안씻음력을 전국에 보여주자.
-
유학 워홀 교환학생 개마렵다 진심 사대주의 ㅈ됨 지금
-
궁금궁금
-
지금 수학1 개념 다 끝내고 쎈 끝내서 이제 심화를 하려고 하는데 한석원 선생님...
-
쌀먹
-
진짜 고대(고려대x)의 분들인 경우가 있음...
-
솔직히 피코 8
보쿠노피코 밖에 생각안남
-
모든 커뮤에서 이렇게 까이는거임? 저 좀 궁금함
-
지린다잉….. 내 워너비 과외도 하고 몸도 만들고 멋지게 사는것이야…
-
221130 선에서 정리됨
-
얼마벌어요?
-
서울대 합격하면 할 일 16
오르비언특정하기
-
억지로 널 붙잡고 흐느껴난
-
중뱃단 어디갔냐 16
화력 집중할 시간이다.
-
안녕하세요. 한방에 맥잡는 국어 한방국어 조은우입니다. #독서론의 의미 오늘은...
-
# 국어 문학 - 연경탈출프로젝트독서 - 정시의벽언매 - 더여니 # 수학 수학 1,...
-
컨텐츠 잘 찾아보면 나름 꽤 있지 않나 응시 인원수치곤
-
생명1등급 지구4등급이 나와버려서 바꿀려고 하는데 생2가 좋을지 화2가 좋을지...
-
님이 듣는 인강강사가 수능 문제보려고 수능 치러왔으면 시험 끝나고 답 맞출거임??
-
어떻게 해야지 이거 많이 가지나요? 레어 사고 싶어서요
-
인원수세배+조기발표 하 우리학교 일안하고 뭐하냐 방법은 시청이랑 시의회에 폭동...
-
제발 아무나 날 원해줬으면
-
하는걸 아는 동기는 한명더 있긴한데
-
굿굿 ㅎ
-
아이 이거 큰일났네
-
역시시뱃이맘편함 0
-
뮤지컬보세요 근데 볼만한건 이미 표가 다 없긴해요
-
오노추2 2
에메-うつくしい世界
-
이 문제 이렇게 푸는 거 보고 벽느낌
-
거의 9일정도 되는 거 같은데
-
무물 4
새복많 입니당
첫번째 댓글의 주인공이 되어보세요.