재밋는 문제 (15000덕)
다음 조건을 만족하는 정의역과 공역이 모두 정수인 함수 f를 모두 찾아라.
f(0)=1.
모든 정수 n에 대해 f(f(n))=f(f(n+2)+2)=n.
풀이더 써주세여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어깨 삼각근 쪽에 꽃문신 하나 할까 싶은데 좀 그럴까요..? 의대생입니다
-
최적쌤 성격이 어떠신가요?
-
메가스터디 사문 2
메가패스 있으면 걍 사문은 윤성훈T 들으면 될까요 실모나 N제는 다른 분들거 좀 섞고
-
ㅇㅈ 6
-
짜파게티 4
-
이번에 과탐에서 사탐런 예정인 사람인데어준규 쌤 어때요? 지식밥차에서는 말이 귀에 박히던데
-
하... 헤어진 지는 한 두 달 정도 됐습니다... 진짜 전 그 친구한테 엄청 잘...
-
오늘한거 0
화2 주스 풀기.......(이게 끝이라고.....p)
-
다군이고 210명뽑고 계속 6칸 뒤쪽이었음..
-
올해 사문 7
올해 사문 전망이 어떤가요 한지랑 사문 중에 고민중인데
-
힙합추천 2
오이글리-1에서8 이거 ㄹㅇ ㅈ됨
-
@orbihaku
-
오르비를 0
심심해서 일년만에 다시 하니깐 꽤 재밌다
-
추억여행 떡밥은 어떨까요?
-
한번만 봐주세요.. 11
앞으로 이런 사진 다신 안 올릴게요 제가 판단을 잘못했어요 미안합니다 살려주세요...
-
욕 많이 먹어서 2
오래 살거같아요..
-
옯서운 사실 10
내가 벌점 0이다
-
그것은 바로 저의 {풀떼기}임 들어온 김에 구경하세요
-
우리 학교에 자칭 엉덩이 감별사가 있었음요. 그 친구는 쉬는시간마다 돌아다니며...
-
믿어요 여러분들
-
대체 왜
-
나는 병신호소인이었던거임...
-
오늘 애들끼리 밥 먹으면서 입시 얘기하다가 옯비 이야기 나와서 애들한테 모르는척...
-
혹시 르하임에서 재수 해보신분 계신가요? 아님 르하임처럼 고정석 없는 스카에서...
-
ㅇㅈ이라는 말은..
-
뭘본거야
-
감사합니다.
-
- 5만원빵(~0원 조정 가능) - 저는 선택과목 언확사지1임 - 원하는 환산식...
-
좋은거봤다 4
줍줍
풀 힘이 업다
ㅌㅋㅋ
1-n말고 더 나올 수가 있나?
풀이 써주세요 ㅋㅋ. 생각보다 빠르시군
f(k)=1-k, f(1-k)=k를 k=0,1 (1-k=1,0)이 만족한다.
n=k-2, n=-1-k일때를 대입하여보면 f(3-k)=k-2 -> f(k-2)=3-k, f(k+2)=-1-k을 만족하므로, k=0,1이 만족한단 사실을 알면 모든 n에 대해 성립?
맞는듯요.. 또 난이도 조절을 실패햇군....
제가 아는 풀이보다 쉬운 풀이가 잇엇군요.
원래 풀이는 뭐였죠??
사실 거의 비슷하긴 해요.
f(f(n))=n에서, f가 일대일함수 이므로, (f(alpha)=f(beta)라고 하고 대입해보면 alpha=beta)
f(f(n))=f(f(n+2)+2) => f(n)=f(n+2)+2고 여기서 짝홀 나눠서 귀납 쓰는게 원래 풀이에요
이렇게 쓰는게 좀 더 정석적인 수학의 언어로? 쓰는 것 같긴하네요이
러프하게 머릿속에서 굴려본거라 설명이좀엉망이네요