미적분러라면 이 정도는
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
중앙대 등록 3
중앙대 최초합 등록이 2월 10일부터 12일까지인데 이때 등록금을 납부하면 차후에...
-
왜 이렇게 빡셈? 거기에 비해선 여기는 그냥 디시..
-
아무래도 개념 약한 사람들이 많이 가다보니..
-
그냥 순서대로?
-
진구 최악의 두뇌와 운동신경 엄청나게 게으르고 책임감도 전혀없음 남탓을 잘하고...
-
인문 철학 법 지문은 물론이고 경제 지문도 그읽그풀 가능했는데 과학기술 지문에는...
-
일단 시간 너무 죽이는 거 같아서 수능이던 고시던 뭐라도 해봐야겠는데 육군 징집으로...
-
데이트달다 6
흐흐흐
-
내신국어 Joat 수능 국어 NOT BAD
-
석공의얼굴.
-
기출 5개년 정도 다 본 다음 해야할까요?
-
문학은 적폐다.
-
문학 어려운거보단 나은듯
-
재수생이고 내신은 1.1 초반인데 교과로 어디까지 갈 수 있을까요...? 의대나...
-
19수능은.... 10
나 초딩때 시행된 수능임 ㅎㅎ
-
수능장에서 본거 9
수학치고 나와서 화장실갓다 오는데 누가 복도 의자에서 겁나 우는거임 숨죽여서...
-
ㄷㄷㄷㄷ
-
아 맛잇어 2
버거킹 새우버거
-
17리트 가면의 꿈 인듯… 잊음을 논함이나 할매턴우즈랑 비교가안됨 개씹joat
-
수학을어렵게내는게맞음 ㅇ
-
24수능때의 나를 단단하게 만들었던것같다 왜 둘다쳤는지는 물어보지말것.
-
강민철 이원준 박석준 고민중
-
공주 잘게 7
오야스미
-
질문있습니다 혹시 그때 국어시험도중에,그리고 국어 시험끝나고의 심정이 어떠셨나요?...
-
늘 올때처럼 그냥 파란 비닐에 싸서 왔는ㄷ 랩핑이 안되있음 랩핑 없으면 환불 못하는거아닌가….?
-
충분히 나쁜 대학임 +1 ㄱㄱ
-
왜 연예인들이 생활고 때문에 알바했다하면 불쌍하게 봄? 알바하면서 꿈키우는 사람들이...
-
공리는 참이라는 증명이 없다 이말은 귀류법 증명이 없다는 말 이말은 공리를 부정하면...
-
느낌이그럼
-
고작 중졸시험에 독서를 넘. 어렵게 내면 가혹함
-
ㅈㄱㄴ
-
이해하면 소름돋는 사진 11
ㆍ
-
대학생 노트북 25
그램 vs 맥북 멀 더 추천하시나여
-
진짜 ㅈ된건가 5
본인 수학은 진짜 우리집 마당 까치보다 못하는데 범바오쌤 스블듣고 페메좀 풀리니깐...
-
합격증으론 적용안되는건가요? 학생증 나와야되나? ㅠㅠ
-
이미지 써주세요 35
.
-
이미지 써주세요 18
-
극한상쇄 10
해설 아직 남아 잇나요?
-
이러고 (2n-1)(2n)(2n-1)(2n) 마셨는데 있었네… ㅠㅠ
-
24수능 문학이 훨씬낫다.
-
이새낀 진짜뭘까 3
현장에서 봤었는데......... f(x) 뾰족그래프 그리고 뭐지? 시전하고 바로...
-
돈 없으면 뭔가 아무것도 하기 싫고 되게 사람이 부정적이게 되는데 돈 생기니까...
-
영어랑 동급이라던데 사실임?ㄷㄷ
-
그래 이게 맞아 9
자신있게 답할 수 있고, 다른 풀이는 왜 효율적이지 못한지 설명할 수 있고,...
-
근데 진짜 21년도까지는 30번에 감동이 있었는데 10
그때까지만 해도 30번이란건 현장에서 풀어내기만 해도 뭔가 뿌듯함이 느껴지는 그런...
-
예비고2이고 수학, 과탐 개념 강의 듣고 있는데요 (현우진의 시발점, 배기범의...
-
돈이………… 그냥 김종익쌤 들을까말까.!?!?.
-
언제부터 주나요? 단과입니다
항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀
수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)
우악 토나와
오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다
가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ