미적분 출제 예상 (2)
평가원 기출 문항 또는 잘 만들어진 문항의 특성 중 하나는
출제 의도에 부합하지 않는, 다시 말해 불필요한 작업을 피하는 것이
문제 풀이에 도움이 되는 것이라고 생각합니다.
S_1과 S_2를 직접 구하려고 하면 쉽지 않습니다.
그러나 선분 OT, 선분 OQ, 그리고 호 TQ로 둘러싸인 부분의 넓이를 x라 할 때
로 접근하면 쉽습니다.
한꺼번에 구하기를 포함해 문제가 원하는 대로 풀이를 이어가는 것이
원활한 마무리에 도움이 될 때는 평가원 시험지에서 어렵지 않게 찾아볼 수 있습니다.
2025학년도 대학수학능력시험 9월 모의평가 (미적분) 28번은
적분 퍼즐에다가
역함수 적분 약간,
그리고 주어진 적분 조건의 f'(2x)sin(ㅠx)를 g(x)-x로 작성하지 않는
불필요한 작업을 피하는 것 정도로 정리해 볼 수 있겠습니다.
만약 f'(2x)sin(ㅠx)를 g(x)-x로 바라봐야 했다면
문제에선 g(x)-x를 주었을 것이라 생각해 볼 수 있습니다.
적분 퍼즐이 아닌 역함수 적분에 초점을 두고자 했다면
다음과 같은 조건을 확인할 수도 있었을 것입니다.
역함수 적분에 초점을 두었다면 23 수능 29번이나
22 수능 30번 같은 형태였을지도 모르겠습니다!
sin(ㅠx)가 x=n (n은 정수) 일 때 0이기 때문에
x=n일 때 g(x)=x임을 활용해 역함수 적분을 간단히 처리할 수 있었는데
x=p이면 sin(x)=q일 때 sin(x)=q라고 x=p가 아님에 초점을 두고자 했다면
21 9월 21번의 향을 조금 담을 수도 있지 않았을까 생각해 봅니다!
2023학년도 6월, 9월, 수능은 15번에 귀납적으로 정의된 수열 추론
22번에 삼차함수 결정 (극한, 평행/대칭/회전이동+구간별, 변화율로 정의된 함수)
그리고 미적 4점에 삼각함수 극한 (도형) 이 출제되었습니다.
이후 세 유형 모두 힘이 빠지며 아래와 같이 비교적 생소한 문항이 출제되었습니다.
이후 2025학년도에 출제된 문항 중 마음에 드는 것이 다음과 같습니다.
세 문항을 아래의 문항과 함께 살펴보기 좋다고 생각합니다.
이러한 맥락에서 항등식의 양변 적분 출제를 조심스레 예상해 봅니다!
(19 6월 가형)
(19 수능 가형)
아래는 2022학년도 대학수학능력시험 (미적분) 24번을 활용한
항등식의 양변 적분 문항입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
결국엔 오르비 남는구만
-
대체 뭐하는 애들임 한학기밖에 안다녔지만 수험커뮤생각 1도 안났는데 그나마 하는...
-
지2 올해 높2 라서 투과목 하려면 이걸 버릴순 없고 물1은 그냥 하기싫고 어쩔수...
-
ㅠㅠ점점 백분위 떨어지는데 가능성 업껟쬬?
-
나중에남자친구한테서 가장듣고싶은말임뇨
-
건동홍 이상 가능함? 공대 갈거라 공대 기준으로
-
백분위 78 94 2 91 53 언매 미적 물리 지구 입니다… 국숭세단 공대 불가능인가요…?
-
사문은 확정이고 나머지 생윤 or 윤사 고민중인데요.. 이학년 내신으로 사문 윤사를...
-
실존하는사람임?
-
뭔가 인생걸고하는 게임이라 중독된거같음 큰일났네
-
부모님도 슬슬 수능 공부라하라고 압박넣는데 정시 처음이라 너무 떨림뇨 고3 형누나들 존경스러움뇨..
-
난 변태임 8
ㄹㅇ
-
자 이건 내 성적 진학사 경희대 인문대학 6~9칸 중앙대 인문대학 4~5칸...
-
맏이라서 형아라는 말은 진짜 목구멍에도 안올라옴 우웩
-
올해 초에 심심해서 만든 애니모의고사 2회 공유해봄 22
https://drive.google.com/file/d/1chg8Q-dkL4cXRZ...
-
지1 지2<— 2
변태같음
-
띠따띠라띠따따또따
-
이전에 올렸던 주요문항 풀이를 삭제하고 좀 더 풀이를 정제하여 1-20번 까지의...
-
약네랜 2기 특 6
아무도 여기에서 엔딩낼줄 몰랐을듯
-
1월 31일까지 0
IELTS Academic 8.0 (each 7.0) 드가자~
-
스펙 평가좀뇨 3
187 47 80 09년생 고려대 소프트웨어 재학 누백 3 어떰뇨
-
저격에 앞서 우선 저의 성급했을 수도 있는 언행들에 대해 짚고 넘어가겠습니다. 1....
-
TEAM05 4
있어요?
-
차은우가 대성마이맥 광고하는거 뭔가 웃기다ㅋㅋㅋㅋㅋ 5
수능따위 상관없이 인생 잘 살 사람인데
-
옯서운 이야기 3
내 국수점수는 명지대급이지만 내 탐구점수는 메쟈의급임
-
형아라고부를수있잖음
-
순환론이 운명론적 관점인 이유는 이해 되는데요 진화론이 운명론적 관적이 아닌 이유를...
-
언매 84 확통 81 영어 2 생윤 48 사문 50 전부 원점수임 동생이 중대...
-
아기 현역 달린다
-
너무함뇨
-
ㅠㅠ
-
지금 이정도면 실채점 후 다 빨간불인가요?
-
냥대 논술 0
오전1오후1이랑 오후2랑 난이도 차이가 큰가요?
-
team 98도 ㅎㅇㅌ 10
가자뇨
-
대성 들을꺼고, 공통은 이미지t 하다가 어느정도 개념이 잡히면 김범준t로 넘어갈...
-
뭉탱이로.
-
ㅇㅈ함뇨 2
ㅇㅈ
-
임요 임뇨 4
신기하게 ㄴ이 첨가가 됨
-
떴으니까 올리지 경희도 합격했음......
-
걍 미적 달린다 1
성공 여부에 상관없이 군생활은 녹일 수 있겠지
-
ㅇㅇ
-
틀린문제가 15 19 31 35 ㅋㅋㅋㅋ 시발
-
이궈궈던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
1. 학생회관 엘리베이터는 불과 4년 전에 바뀌었다. 그 전에 설치 된 엘리베이터는...
저는 올해도 상수 또는 직선구간을 갖는 함수 나와줬으면 하네요..분석글 좋아요 ㅎㅎ
2019학년도 대학수학능력시험 9월 모의평가 (나형) 21번
ㄴ 이런 느낌도 좋을 듯하네요
왠진 모르겠지만 비슷한 맥락에서 2017학년도 대학수학능력시험 (가형) 21번도 떠오르네요~~
마지막 문제 답이 뭔가요?
196입니다! 풀어주셔서 감사드립니다