암묵적 전제와 입증책임-광다이오드 오류논란
안녕하세요. 독서 칼럼 쓰는 타르코프스키입니다.
광다이오드 문제를 기억하시나요?
"흡수층에 충분한 에너지를 가진 광자가 입사되면 전자(-)와 양공(+) 쌍이 생성될 수 있다."는 제시문의 문장과, "애벌랜치 광다이오드의 흡수층에서 전자-양공 쌍이 발생하려면 광자가 입사되어야 한다."라는 문장 사이의 관계에 대한 논란이었습니다.
저는 논리적으로 위 추론이 부적절한 점이 있고, 출제오류로 인정될 가능성도 있다고 생각합니다. 하지만 평가원은 이를 부정했고, 수험생으로서는 이러한 기준을 수용하고 판단기준을 잡는 수밖에 없습니다. 저는 출제기관이 때로는 상당히 자의적이거나 편향된 추론을 하고, 객관적 진리에 부합하지 않는 경우도 있다는 주장에 상당히 동의합니다.
한편 이해황 선생님이 필요원인 추정이라는 개념을 도입해서, 이 문제는 출제오류가 아니라고 설명하신 글도 흥미롭게 보았습니다(https://orbi.kr/00031797465). 위 글의 논지에 전부 동의하기는 어렵지만, 수험생의 실용적인 기준이 필요하다는 지적은 타당합니다. 수험생으로서는, "광자 입사의 효과를 설명하는 문제에서, 굳이 광자가 입사되지 않더라도 글에서 언급하지 않은 다른 요인으로 전자-양공 쌍이 발생할 가능성을 근거로 문제를 내지는 않았겠지" 정도의 생각으로 답을 선택하는 것이 가장 효율적일 것입니다.
사실 위 칼럼에서 언급된 추정이라는 개념은 법학에서 '입증책임'이라는 개념과 연관되어 매우 폭넓게 쓰이는 도구입니다. 무죄 추정의 원칙, 점유자의 선의 추정, 등기의 추정력, 친생추정 등을 예시로 들 수 있겠습니다. 일단 추정은 간주와 다르다는 점에 주의해야 합니다. 추정은 반증이 가능하고, 간주는 반증이 불가능하다고 표현하기도 합니다. 점유자의 선의 추정은 반대 증거를 통해서 번복될 수 있지만, 의제강간 제도에서 13세 미만의 사람을 간음한 자는 실제로는 합의된 성관계였다는 내용으로 반대 증거를 제출하더라도 의제강간이 번복되지 않습니다. 그게 바로 의제, 간주 제도의 취지이기 때문입니다.
결국 추정은 필연이 아니라는 점에서, 개연적인 상황에 불과한 것인데, 왜 굳이 법조인들인 추정이라는 관념을 만든 것일까요? 가령 아내가 혼인 중에 임신한 자녀는 남편의 자녀로 추정한다는 법 규정을 봅시다. 그 자녀는 남편의 자녀일 수도, 아닐 수도 있고 정확히 알 수 없다는 말과 논리적으로 동일해 보입니다. 하지만 남편의 자녀가 아닌 것으로 추정하지 않는 이유는, 결국 입증책임을 분배하기 위한 것이고, 위 두 문장의 문맥적 의미는 결코 같다고 볼 수 없습니다. 아마도 입법자는 사회통념과 세상의 관습을 고려하여, 웬만하면 남편의 자녀가 맞을 것이라고 생각하고, 이런 법을 만들었을 것입니다.
물론 구체적으로 어느정도의 반증이 제시되어야 추정이 번복되는지는 매우 까다로운 문제입니다. 제가 하고 싶은 말은 수험생으로서는 논리적 필연성과 개연성에도 민감해야 하지만, 출제의도를 고려해 적절한 추정과 반증의 감각을 함께 익혀야 한다는 것입니다. 출제자의 과거 패턴을 익히고, 배경지식, 상식과 통념을 통해 추정의 정확도를 높일 수는 있습니다. 이 대목은 사실 문학에서의 소위 '허용가능성' 논쟁과도 유사한 측면이 있다고 생각합니다. 문학에서 일정한 범위 내의 감상을 합당한 것으로 인정해주는 것처럼, 비문학(독서)에서도 맥락상 허용 가능한 범위가 있고, 반대로 말하자면 무시 가능한 반박이 있습니다. 이러한 요구는, 결국 어떠한 전제는 굳이 말하지 않더라도 퉁쳐서 인정될 수 있다는 요구와도 동일합니다.
물론 사람이 독약을 충분히 먹으면 그는 죽는다 --> 그가 죽었다면, 독약을 충분히 먹었을 것이다
라고 일반화하는 것은 결코 합당하지 않습니다. 하지만 지문에서 독약, 화살, 자연사, 병사 등의 가능성을 아주 미미하게라도 언급했어야 위 지적이 실질적인 의미를 가질 수 있습니다. 지문에서 독약의 종류, 치사량, 역사 등에 대해서 중심적으로 논의했다면, 그리고 사망한 사람이 무언가를 먹었고, 특별히 외부의 사망요인에 관한 정황이 드러나지 않았다면 위와 같은 추론이 더 강한 설득력을 가지게 되는 것이 맞습니다.
LEET 문제에서 비슷한 논쟁을 본 적이 있는데, 간소화하자면 이런 것입니다.
"전쟁 중 자신의 신체를 해하여서 병역을 기피한 사람"은 "타인에게 피해를 준 것"이라고 말할 수 있는가?
"조직폭력배의 일원인 A가 B를 납치했다면, B는 생명이나 신체에 중대하고 임박한 위해의 위험에 빠졌다고 단언할 수 있을까?"
논리적으로만 보자면, 전쟁 중이라는 사정, A가 조폭의 일원이라는 사정은 정도의 차이를 보여줄 뿐 명제의 참 거짓의 판단에 영향을 주지 않는다고 해야 할 것입니다. 위 추론이 타당하기 위해서는 일정한 암묵적 전제가 필요합니다. 하지만 실제 LEET 문제에서는 조금 더 상식적인 추론에 입각해서 둘 모두 가능하다는 취지로 정오를 판단한 사례가 있습니다. 저는 두 문제 모두 예외적인 가능성을 지나치게 무시한 것이 아닌지 의문을 가지지만, 어쨌든 '애매하면 상식적인 추론을 택하자'는 법칙이 동일하게 적용된다고 볼 수 있을 것입니다. 친생추정, 무죄추정이 마음에 안 들더라도 어쩔 수 없는 것과 마찬가지라고 생각합니다.
저는 출제자가 광다이오드 문제에서 예외적인 가능성을 놓쳤다는 지적에 동의합니다. 출제자가 의도적으로 함정을 팠을 수도 있겠지만, 그러한 문제의 득과 실을 고려하면 아마도 단순히 실수했거나 게을렀던 게 아닐까 싶습니다. 그러나 수험생은 그러한 문제에서 적절한 관용을 가질 필요가 있습니다. 문제에서 언급되지 않은 예외적 가능성을 너무 치밀하게 고민하는 것은 문제 풀이에서는 유용하지 않을 수 있습니다. 문제에 충분한 설명이 없는 영역은 아예 없는 것으로 취급하자는 판단기준을 일단 받아들이면, 찝찝함이 남더라도 정답을 고를 수 있을 것입니다. 그 과정을 어떤 면에서는 '필요원인 추정'이라고 부를 수 있겠으나, 개인적으로 평가원이 실제로 유사한 방식의 문제를 또 내지는 않을거라고 생각합니다. 우리가 더 신뢰하고 의존할 수 있는 추론은, 무릇 출제자라면 이정도로 지엽적이고 지문 외적인 경우를 상정해서 정오판단을 하게끔 의도했을 리가 없다는 정도의 믿음이 아닐까 싶습니다.
오늘은 여기까지입니다. 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학재능없으면 11
이미지 n티켓 (2024)수12미적 이미지 하사십(2024) 한석원 4의규칙...
-
수능 성적표 금욜날 볼 수 있는거죠? 그리고 폰으로 볼 수 있었나 0
기억이안나네
-
어두컴컴하면 집중이 잘 안 돼서 평소에도 밝은 환경에서 공부했는데 수능 날 커튼이...
-
하지만 난 고고히 내년도 보겠다..
-
ㅅㅂ 6
드디어 도착 길 헤멜 리 없겠다 럭키비키한걸?
-
어디까지 갈 수 있을까요..?
-
잘생기긴 했어
-
단연코 패드가 아닌가싶음 휴대성도 좋고 책이나 ppt를 패드로 봐야할 때가 되게...
-
결말이없음 이게 일단 이유임
-
AU LY pc 8
왜 파섹만 소문자임 차별 그만!!
-
덜려라 하니 2
ㅈㄱㄴ
-
이대 논술 7
답 나오는것만 복기 1) h(0)=0 h(3)=파이/6 2a+b 2) a-1...
-
현재기준 원서 넣으면 과탑급인 ’중앙대학교 공공인재학부‘
-
포덕은 상당히 움찔하고있다 이말이야.
-
진짜 답안지 쓰는게 은근 힘듦... 아닌가 나만 그런가
-
수능 한 번 맛 보니까 만만한 시험이 아니구나를 느끼네요 수능 공부할 때 편한 길만...
-
질문은 아래에 있습니다...!! 내년에 수능칠 이과? 현역입니다 인서울 상위권...
-
240×(지구 둘레)/s 정도는 돼야한다!
-
수학 n제 3
수능에서 수학 2정도 받으려면 n제 얼마나 풀어야할까요 사람마다 말하는게 너무...
-
궁금함뇨
-
뭔데 303관까지 무슨 무한의 계단급인데
-
끝나고 후기 ㄱㄱ?
-
냥논 공대 0
혹시 0.5 샤프심 두개 있으신분 한번만 빌려줄수있는분 있을까요ㅠㅠㅠ필통 열었는데...
-
한 100배만 더 빨랐으면 좋겠는데.. 얼른 패치좀 해줬으면...
-
12월 지구 노베 시작-> 5,6,7,9,10,수능 1등급 1
오지훈은 신이다 07들아 제발 오지훈 풀커리를 타..!!
-
수학 풀이과정 반정도만 맞고 이후가 잘못돼서 틀렷는데 이거 틀리면 합격 가능성 거의...
-
짬뽕 하나만 먹기는 좀 헤비해
-
중논 상경 3번 0
확률을 직접 못구하니깐 a에 1,2,3 대입하고 여사건으로 푸는거 맞나요??ㅠㅠ
-
그냥 하지 마
-
이대 오전논술 0
2번 a값그대로2025나와서 계산실수한줄알고 두번다시풀음 ㅋㅋ ㅜㅜ
-
3번 문제 궁금한게 있는데 여기에 그림 올려도 되나요?
-
만족도 매우 높음 구하는식 1- (9-a)분의 (7-a) a=1일때 2일때 3일때...
-
내년에도 삭제안되고 그대로 있음? 아님 미리 다 다운받아놔야하나?
-
오 대박 6
소아온이 머지 않았다
-
몇 몇 글 보니까 사탐 약대는 안된다는 댓 많던데 과탐 가산 3퍼만 하는 대학도 꽤...
-
나도모르겟다 어떻게되려나
-
나에게자극을주세요
-
부산대 무물 2
과는 반도체이고 무물 받아요 :)
-
ㅠㅠ 13
-
중앙대 논술 3번 11/26은 아무도 없나요?ㅠ 계산 실수 했나
-
4수하고 잡대 가고 남들 취직해있을 나이에 아직도 졸업 못하고 비전도 없음 여자...
-
현강 신청했는데 1
김범준은 따라갈 수 있을 지 자신이 없는데 인강을 듣는게 나을까요? 정병호 현강도...
-
7/13임 49/97임?
-
80명 고사실에 8명밖에 안 와서..
-
수학 그렇게 어렵게내면 변별은 되냐 한문제는 문제 읽고 바로 포기했는데 ㅋㅋㅋㅋㅋ...
-
바보 등장 8
-
점메추
-
삼수하는데 지금 이거 2권만 사서 인강 안 듣고 해볼 생각입니다 인강은 나중에 끊을...
-
ㅇㅇ
-
수학을 못해서요 0
원점수 언매 95 확통 81 영어 2 사문 48 한지 50입니다 라인좀 잡아 주세요
매우 감사