암묵적 전제와 입증책임-광다이오드 오류논란
안녕하세요. 독서 칼럼 쓰는 타르코프스키입니다.
광다이오드 문제를 기억하시나요?
"흡수층에 충분한 에너지를 가진 광자가 입사되면 전자(-)와 양공(+) 쌍이 생성될 수 있다."는 제시문의 문장과, "애벌랜치 광다이오드의 흡수층에서 전자-양공 쌍이 발생하려면 광자가 입사되어야 한다."라는 문장 사이의 관계에 대한 논란이었습니다.
저는 논리적으로 위 추론이 부적절한 점이 있고, 출제오류로 인정될 가능성도 있다고 생각합니다. 하지만 평가원은 이를 부정했고, 수험생으로서는 이러한 기준을 수용하고 판단기준을 잡는 수밖에 없습니다. 저는 출제기관이 때로는 상당히 자의적이거나 편향된 추론을 하고, 객관적 진리에 부합하지 않는 경우도 있다는 주장에 상당히 동의합니다.
한편 이해황 선생님이 필요원인 추정이라는 개념을 도입해서, 이 문제는 출제오류가 아니라고 설명하신 글도 흥미롭게 보았습니다(https://orbi.kr/00031797465). 위 글의 논지에 전부 동의하기는 어렵지만, 수험생의 실용적인 기준이 필요하다는 지적은 타당합니다. 수험생으로서는, "광자 입사의 효과를 설명하는 문제에서, 굳이 광자가 입사되지 않더라도 글에서 언급하지 않은 다른 요인으로 전자-양공 쌍이 발생할 가능성을 근거로 문제를 내지는 않았겠지" 정도의 생각으로 답을 선택하는 것이 가장 효율적일 것입니다.
사실 위 칼럼에서 언급된 추정이라는 개념은 법학에서 '입증책임'이라는 개념과 연관되어 매우 폭넓게 쓰이는 도구입니다. 무죄 추정의 원칙, 점유자의 선의 추정, 등기의 추정력, 친생추정 등을 예시로 들 수 있겠습니다. 일단 추정은 간주와 다르다는 점에 주의해야 합니다. 추정은 반증이 가능하고, 간주는 반증이 불가능하다고 표현하기도 합니다. 점유자의 선의 추정은 반대 증거를 통해서 번복될 수 있지만, 의제강간 제도에서 13세 미만의 사람을 간음한 자는 실제로는 합의된 성관계였다는 내용으로 반대 증거를 제출하더라도 의제강간이 번복되지 않습니다. 그게 바로 의제, 간주 제도의 취지이기 때문입니다.
결국 추정은 필연이 아니라는 점에서, 개연적인 상황에 불과한 것인데, 왜 굳이 법조인들인 추정이라는 관념을 만든 것일까요? 가령 아내가 혼인 중에 임신한 자녀는 남편의 자녀로 추정한다는 법 규정을 봅시다. 그 자녀는 남편의 자녀일 수도, 아닐 수도 있고 정확히 알 수 없다는 말과 논리적으로 동일해 보입니다. 하지만 남편의 자녀가 아닌 것으로 추정하지 않는 이유는, 결국 입증책임을 분배하기 위한 것이고, 위 두 문장의 문맥적 의미는 결코 같다고 볼 수 없습니다. 아마도 입법자는 사회통념과 세상의 관습을 고려하여, 웬만하면 남편의 자녀가 맞을 것이라고 생각하고, 이런 법을 만들었을 것입니다.
물론 구체적으로 어느정도의 반증이 제시되어야 추정이 번복되는지는 매우 까다로운 문제입니다. 제가 하고 싶은 말은 수험생으로서는 논리적 필연성과 개연성에도 민감해야 하지만, 출제의도를 고려해 적절한 추정과 반증의 감각을 함께 익혀야 한다는 것입니다. 출제자의 과거 패턴을 익히고, 배경지식, 상식과 통념을 통해 추정의 정확도를 높일 수는 있습니다. 이 대목은 사실 문학에서의 소위 '허용가능성' 논쟁과도 유사한 측면이 있다고 생각합니다. 문학에서 일정한 범위 내의 감상을 합당한 것으로 인정해주는 것처럼, 비문학(독서)에서도 맥락상 허용 가능한 범위가 있고, 반대로 말하자면 무시 가능한 반박이 있습니다. 이러한 요구는, 결국 어떠한 전제는 굳이 말하지 않더라도 퉁쳐서 인정될 수 있다는 요구와도 동일합니다.
물론 사람이 독약을 충분히 먹으면 그는 죽는다 --> 그가 죽었다면, 독약을 충분히 먹었을 것이다
라고 일반화하는 것은 결코 합당하지 않습니다. 하지만 지문에서 독약, 화살, 자연사, 병사 등의 가능성을 아주 미미하게라도 언급했어야 위 지적이 실질적인 의미를 가질 수 있습니다. 지문에서 독약의 종류, 치사량, 역사 등에 대해서 중심적으로 논의했다면, 그리고 사망한 사람이 무언가를 먹었고, 특별히 외부의 사망요인에 관한 정황이 드러나지 않았다면 위와 같은 추론이 더 강한 설득력을 가지게 되는 것이 맞습니다.
LEET 문제에서 비슷한 논쟁을 본 적이 있는데, 간소화하자면 이런 것입니다.
"전쟁 중 자신의 신체를 해하여서 병역을 기피한 사람"은 "타인에게 피해를 준 것"이라고 말할 수 있는가?
"조직폭력배의 일원인 A가 B를 납치했다면, B는 생명이나 신체에 중대하고 임박한 위해의 위험에 빠졌다고 단언할 수 있을까?"
논리적으로만 보자면, 전쟁 중이라는 사정, A가 조폭의 일원이라는 사정은 정도의 차이를 보여줄 뿐 명제의 참 거짓의 판단에 영향을 주지 않는다고 해야 할 것입니다. 위 추론이 타당하기 위해서는 일정한 암묵적 전제가 필요합니다. 하지만 실제 LEET 문제에서는 조금 더 상식적인 추론에 입각해서 둘 모두 가능하다는 취지로 정오를 판단한 사례가 있습니다. 저는 두 문제 모두 예외적인 가능성을 지나치게 무시한 것이 아닌지 의문을 가지지만, 어쨌든 '애매하면 상식적인 추론을 택하자'는 법칙이 동일하게 적용된다고 볼 수 있을 것입니다. 친생추정, 무죄추정이 마음에 안 들더라도 어쩔 수 없는 것과 마찬가지라고 생각합니다.
저는 출제자가 광다이오드 문제에서 예외적인 가능성을 놓쳤다는 지적에 동의합니다. 출제자가 의도적으로 함정을 팠을 수도 있겠지만, 그러한 문제의 득과 실을 고려하면 아마도 단순히 실수했거나 게을렀던 게 아닐까 싶습니다. 그러나 수험생은 그러한 문제에서 적절한 관용을 가질 필요가 있습니다. 문제에서 언급되지 않은 예외적 가능성을 너무 치밀하게 고민하는 것은 문제 풀이에서는 유용하지 않을 수 있습니다. 문제에 충분한 설명이 없는 영역은 아예 없는 것으로 취급하자는 판단기준을 일단 받아들이면, 찝찝함이 남더라도 정답을 고를 수 있을 것입니다. 그 과정을 어떤 면에서는 '필요원인 추정'이라고 부를 수 있겠으나, 개인적으로 평가원이 실제로 유사한 방식의 문제를 또 내지는 않을거라고 생각합니다. 우리가 더 신뢰하고 의존할 수 있는 추론은, 무릇 출제자라면 이정도로 지엽적이고 지문 외적인 경우를 상정해서 정오판단을 하게끔 의도했을 리가 없다는 정도의 믿음이 아닐까 싶습니다.
오늘은 여기까지입니다. 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문과누백 << 이건 문과들끼리 줄세운거고 이과누백 << 이게 이과들끼리...
-
건동홍도 명문임 12
반박은 안받음
-
어렵다는 모의고사인데 사실 작년 수능이 더 어려웠음 수능 전에 본 모든...
-
평소에 화장 하는데 아예 안하고 보정 없이 아이폰 16 기카로 찍은 사진인데 님들이...
-
한숨잘까 1
-
이대봉전 6
6평 이대봉전 정도면 난이도 좀 있는 고전소설 아닌가요..? 왤케 정답률이 높지
-
네 저예요
-
이감 수능 0
이감은 60~70점대 오늘 친 23수능은 90점대 뭐가맞는지 모르겠다
-
반수 성공한다는데 지금 대학도 높아보임 ㅋㅋ
-
6평 9평 미응시 삼반수생 어둠의 표본인 ‘나‘가 참전하기 때문.
-
수능수학 10
언제쯤 귀납적 수열이 안나올까 ㄱㄴㄷ, 무등비 삼도극 이런애들은 없애면서 왜 귀납...
-
내가 그렇게 만들거임 사실 그런건 아니지만 굳이 명문대 급 나누고 상처받는 것보단...
-
0도 아니고 내맘대로 3/2라고 생각함
-
【파이낸셜뉴스 전주=강인 기자】 전북지역 거점 국립대인 전북대학교가 단순한 학교...
-
싫은데? 안풀건데?
-
ㅅㅂ 10덮 풀어봤는데 더 쉬운것들보다도 더 좆망한 점수가 나옴
-
아침 컨디션에 따라서 이감 기준으로 원점수가 15점씩 왔다갔다해서... 수능날 아침...
-
ㄹㅇ..
-
평가원 실모 교육청 다 포함해서 국어 88점 처음 받아봄... 감격스럽다
-
닉값하러감 ㅎ.ㅎ
-
유명한 학교 인기있는 학교 좋은 학교 뭐 이런거였으면 넓게 잡을 수 있는데...
-
문제 퀄리티는 둘째치고 수학 어려웠나요?
-
스타벅스 바닐라크림콜드브루 벤티사이즈 맛잇으니까 ㅈㅂ 먹어봐 제목구라야;
-
진짜 뭐뇨이
-
빨래 대신해줄 미소녀 메이드 있으면 좋겠다
-
ㅇ
-
수능날 화작 틀릴까봐 15
요새 매일 화작실모품.....ㄹㅇ 요새 화작도 어려운듯
-
한문제 500원이던 시절부터 5년동안 해왔는데 회사가 대하는 태도를 보니 이젠 진짜...
-
수학 실수 1
실수 줄이기 진짜 어케 하나요 ㅜㅜㅜㅜㅜㅜ
-
벽에 붙어잇는거 차마 옆사람한테 말하지 못하고 그냥 수업들으러 강의실로 도망침...
-
실모 풀어서 틀린거는 답지봐도 내가ㅡ이걸 어케아는데 ㅁㅊ 이라 걍 … 그거...
-
있는지 모르고 계속 묵혀 놓은 거 지금 풀었는데 어디서 보나요
-
어떻게 보세요 다들
-
드가자~
-
내용이 기억안나네 아무튼 개웈ᆢ기ㅣ곃음
-
스카이라하기엔 너무 좁고 중경외시라하기에는 너무 넓음
-
ㅠㅡㅠ
-
문제풀면수 가채점 쓰고 3분 남았을때 마킹해도 괜찮을까요...? 부정행위는 아니죠...?
-
드디어 정신병에 걸렸구나
-
그냥 표많이받은쪽이 이기는게 맞지않나
-
수학 실모 0
마무리로 뭐하는게 좋을까용
-
ㅈㄱㄴ 건동홍 빼는 이유
-
독서실 드가자 0
갓생을 못사네. ㅠ
-
수요일이나 목요일에 볼까 하는데 고민중입니다
-
11투스 7
보신 분 없나요 ㅜㅜ 수학 답 맞춰봐용..
-
점심 슬슬 0
도시락 연습도 필요할 것 같네요
-
시간 ㄹㅈㄷ로 빠르네.... 작수가 한달전같음
-
하는 놀라움을 느낀 적이 여러 번 있음 확실히 뇌가 퇴화함
-
국어 푸는데 3
학자가 5명이길래 이게 뭐지 하고 보니까 역시 리트구나....하 ㄹㅇ 제발 꺼졌으면
매우 감사