사회·문화: '줄다리기의 원리'
안녕하세요. Headmaster입니다. 오랜만에 사문 칼럼으로 다시 찾아뵙게 되었네요.
오늘 본 칼럼에서 다루게 될 ‘줄다리기의 원리’는, ‘세 가지 이상 변수에서의 가중평균’ 유형의 문항의 해결에 있어 활용할 수 있는 원리입니다.
2021학년도 9월 모의평가 20번에 최초로 등장해 75%가 넘는 오답률을 기록했던 해당 유형의 문항은, 이후 시험에서도 적지 않은 빈도로 등장해 많은 학생들에게 어려움을 선사해 줬죠. 해당 유형의 문항에 대한 일반적인 풀이 방법은, 각 변수가 가지는 가중치(일반적으로는 각 지역의 인구)를 미지수로 둔 뒤 비율에 대입해 해당 미지수를 구하는 것이었습니다.
그러나 해당 방법은 여러 번의 방정식 계산을 거쳐야 한다는 점에서, 많은 시간을 들여 문제 풀이를 진행해야 한다는 단점이 존재합니다. 안 그래도 사회탐구 중 상당한 수준의 타임어택을 가지고 있는 사문 과목의 특성상, 위 유형의 문항은 존재만으로도 시험 운용에 매우 큰 영향을 미치게 되죠.
그렇기에 저는, 해당 유형의 문항을 해결하는 데 있어 활용할 수 있는 새로운 방법을 제시합니다: 그리고 저는 이 방법을, ‘줄다리기의 원리’라고 명명하겠습니다.
본격적인 설명에 들어가기 전에 다음 사례에 대해 생각해 봅시다.
줄다리기에 있어 3만큼의 힘을 가진 사람 5명이 왼쪽에서 줄을 당기고 있고, 5만큼의 힘을 가진 사람 2명이 오른쪽에서 줄을 당기고 있다면, 줄은 어느 방향으로 어느 정도 힘으로 끌려갈까요?
이 질문에 대해서는, 아마도 이 글을 읽고 있는 여러분 전부 쉽게 답을 내어놓을 수 있으리라 생각합니다: 왼쪽으로 당겨지는 힘이 총 15, 오른쪽으로 당겨지는 힘이 총 10이니, 왼쪽으로 5만큼의 힘으로 끌려갈 것이라는 사실을 알 수 있죠.
그러면 여기서 한 가지 질문을 더 던져 보겠습니다: 위 상황에서 1만큼의 힘을 가진 사람이 오른쪽에 붙어 줄을 당긴다고 하면, 줄이 더 이상 어느 방향으로 끌려가지 않게 하려면 몇 명의 사람이 붙어야 할까요?
왼쪽으로 5만큼의 힘으로 줄이 끌려가고 있으니, 1만큼의 힘을 가진 사람은 총 5명 붙어야 힘의 평형이 이루어져 어느 쪽으로 줄이 끌려가지 않게 되겠죠.
위 상황을 정리해보면 다음과 같습니다: 3만큼의 힘을 가진 사람 5명이 왼쪽에서 줄을 당기고 있고, 5만큼의 힘을 가진 사람 2명과 1만큼의 힘을 가진 사람 5명이 오른쪽에서 줄을 당기고 있어 양쪽에서 줄을 당기는 힘이 같아 줄은 어느 방향으로 끌려가지 않고 있죠.
그럼 이제 위 상황을, 여러분들이 자주 보았을 방식으로 표현을 해 보겠습니다.
아마 여러분들은 이 표를 보자마자 다음과 같은 의문이 들었을 것입니다: 위에서 제시한 줄다리기 상황하고 이 표가 도대체 무슨 관련이 있는 것이죠?
그리고 당연히, 이 표를 그냥 봤을 땐 그 연관성에 대해 아무것도 와 닿지 않을 것입니다: 뒤에서 제가 몇 가지 내용을 제시할 테니, 해당 내용에 비추어 위의 표를 다시 바라보시죠.
갑국 전체 비율(‘가 제도 수급자’라는 표현은 편의를 위해 생략하겠습니다): 줄다리기의 줄
2. 갑국 전체 비율보다 낮은 비율: 줄을 왼쪽에서 당기는 것
3. 갑국 전체 비율보다 높은 비율: 줄을 오른쪽에서 당기는 것
위에 따르면, A 지역은 ‘갑국 전체 비율’이라는 줄을 왼쪽에서 당기고 있고, B 지역과 C 지역은 ‘갑국 전체 비율’이라는 줄을 오른쪽에서 당기고 있는 것이라고 볼 수 있는 것이죠.
이제 몇 가지 내용을 더 살펴 봅시다.
4. 갑국 전체에 비해 비율이 차이 나는 정도: 줄을 당기는 힘
5. 각 지역의 전체 인구: 사람 수
위에 따르면, A 지역은 ‘갑국 전체 비율’이라는 줄을 왼쪽에서 3만큼의 힘을 가진 사람이 5명 붙어서 당기고 있고, B 지역은 ‘갑국 전체 비율’이라는 줄을 오른쪽에서 5만큼의 힘을 가진 사람이 2명 붙어서 당기고 있고, C 지역은 ‘갑국 전체 비율’이라는 줄을 오른쪽에서 1만큼의 힘을 가진 사람이 5명 붙어서 당기고 있는 것으로 이해할 수 있죠.
만약 여기서 C 지역의 비율이 1%p 늘어서 12%가 된다면 어떻게 될까요?
계산해 보면 아시겠지만, 위 경우에서는 당연히 갑국 전체 비율이 10%가 될 수 없습니다: 왼쪽에서 당기고 있는 힘과 오른쪽에서 당기고 있는 힘이 각각 15로 평형을 이루고 있던 줄이, 갑자기 오른쪽에서 당기고 있는 힘이 20이 되어 평형이 깨져버리기 때문이죠.
그럼 위 경우를 약간 변형해 한 가지 문제를 제시해 보겠습니다.
Q. A~C 지역 (가) 제도 수급자 비율이 표와 같을 때, B 지역 전체 인구는 A 지역 전체 인구의 몇 배인가?
이때, A 지역 전체 인구는 C 지역 전체 인구와 같으므로 두 인구를 100으로 두어 봅시다: 그리고 B 지역 전체 인구는 미지수이니 100k로 둘 수 있죠.
이 경우 A 지역은 ‘갑국 전체 비율’이라는 줄을 각자가 3만큼의 힘으로 왼쪽에서 100명이 붙어서 당기고 있고, C 지역은 줄을 각자가 1만큼의 힘으로 오른쪽에서 100명이 붙어서 당기고 있는 것으로 이해할 수 있습니다. A, C 지역만 보았을 때 줄은 왼쪽으로 200만큼의 힘으로 당겨지고 있으므로, B 지역은 줄을 오른쪽으로 200만큼의 힘으로 당겨야 하죠.
그리고 B 지역은 줄을 각자가 5만큼의 힘으로 오른쪽에서 100k명이 붙어서 당기고 있습니다: 이 말은, 오른쪽으로 총 500k만큼의 힘으로 줄을 당기고 있다는 것을 이해할 수 있죠.
그렇기에 200=500k이고, k=0.4인 것을 알 수 있으며, B 지역의 전체 인구는 A 지역의 전체 인구의 0.4배임을 확인할 수 있는 것이죠.
이렇게 각 지역의 인구와 비율을 ‘줄다리기’의 상황으로 변형해 이해하면, 굳이 방정식 계산을 하지 않고도 구해야 하는 값을 빠르게 구할 수 있습니다.
이제 다음 경우를 한 번 살펴보겠습니다.
Q. A∼C 지역 (가) 제도 수급자 비율이 표와 같을 때, ㉠에 들어갈 값은?
이 경우 A 지역 전체 인구는 500, B 지역 전체 인구는 200, C 지역 전체 인구는 500으로 둘 수 있습니다: *으로 주어진 조건을 활용해 당연히 확인할 수 있는 사항이죠.
B 지역은 각자가 5만큼의 힘으로 오른쪽에서 200명이 붙어서 줄을 당기고 있고, C 지역은 각자가 1만큼의 힘으로 오른쪽에서 500명이 붙어서 줄을 당기고 있습니다. B, C 지역만 보았을 때 줄은 오른쪽으로 1500만큼의 힘으로 당겨지고 있으므로, A 지역은 줄을 왼쪽으로 1500만큼의 힘으로 당겨야 하죠.
그리고 A 지역은 줄을 500명이 붙어서 당기고 있습니다. 이때 우리가 확인해야 하는 정보는 다음과 같습니다: A 지역은 줄을 어느 방향으로, 어느 정도 힘으로 당기고 있는가?
그리고 그 방향이 왼쪽인 것을 우리는 이미 위에서 확인했습니다. 이제 남은 건 얼마만큼의 힘으로 당기고 있는지에 대한 확인이죠.
A 지역이 줄을 왼쪽으로 k만큼의 힘으로 500명이 당기고 있다고 가정해 봅시다: 이때 A 지역은 총 500k만큼의 힘으로 줄을 왼쪽으로 당기고 있는 것이죠.
그리고 A 지역은 왼쪽으로 총 1500만큼의 힘으로 줄을 당겨야 하므로, 500k=1500, k=3인 것을 알 수 있고, A 지역은 왼쪽으로 각자가 3만큼의 힘으로 500명이 줄을 당기고 있는 것으로 이해할 수 있죠.
그렇기에 ㉠에 들어갈 값은 (10-3)=7인 것을 알 수 있죠.
이제 실전에서 출제된 문제들을 살펴보면서, 위 ‘줄다리기의 원리’가 어떻게 적용될 수 있는지 한 번 살펴봅시다.
2021학년도 9월 모의평가 20번
B 지역 전체 인구는 A 지역 전체 인구의 2배이므로, B 지역 전체 인구는 200, A 지역 전체 인구는 100으로 둘 수 있습니다. 또한 C 지역 전체 인구는 100a로 둘 수 있죠.
(가) 수급자 비율을 보았을 때, A 지역은 각자가 왼쪽에서 1만큼의 힘으로 줄을 당기고 있고, B 지역은 줄을 당기지 않고 있으며, C 지역은 각자가 3만큼의 힘으로 오른쪽에서 줄을 당기고 있다고 이해할 수 있습니다.
이에 의하면, A 지역은 왼쪽으로 총 100만큼의 힘으로 줄을 당기고 있고, C 지역은 오른쪽으로 총 300a만큼의 힘으로 줄을 당기고 있다는 것을 알 수 있습니다.
줄을 양쪽에서 당기는 힘은 평형을 이루어야 하니, 300a=100, a=1/3이므로 C 지역의 인구는 100/3인 것을 바로 알 수 있죠.
분수 형식의 인구 계산은 복잡하니, 각 지역의 인구에 3을 곱해주는 정도의 센스는 있으면 좋겠죠?
2022학년도 9월 모의평가 20번
B 지역 인구는 A 지역 인구의 2배이므로, B 지역 전체 인구는 200, A 지역 전체 인구는 100으로 둘 수 있습니다. 또한 C 지역 전체 인구는 100a로 둘 수 있죠.
(나) 수급자 비율을 보았을 때, A 지역은 줄을 당기지 않고 있고, B 지역은 각자가 왼쪽에서 1만큼의 힘으로 줄을 당기고 있으며, C 지역은 각자가 오른쪽에서 6만큼의 힘으로 줄을 당기고 있다고 이해할 수 있습니다.
이에 의하면, B 지역은 왼쪽으로 총 200만큼의 힘으로 줄을 당기고 있고, C 지역은 오른쪽으로 총 600a만큼의 힘으로 줄을 당기고 있다는 것을 알 수 있습니다.
줄을 양쪽에서 당기는 힘은 평형을 이루어야 하니, 200=600a, a=1/3이므로 C 지역의 인구는 100/3인 것을 바로 알 수 있죠.
역시 각 지역의 인구에 3을 곱해, A 지역 인구는 300, B 지역 인구는 600, C 지역 인구는 100으로 설정해 주는 정도의 센서는 있어서 나쁠 게 없겠죠?
이제 ㉠의 값을 구해봅시다: B 지역은 1만큼의 힘으로 각자가 줄을 왼쪽에서 600명이 당기고 있는 것으로, C 지역은 3만큼의 힘으로 각자가 줄을 오른쪽에서 100명이 당기고 있는 것으로 이해할 수 있습니다: 이 두 지역만 보았을 때, 줄은 왼쪽으로 300만큼의 힘으로 당겨지고 있는 것으로 이해할 수 있죠.
그러나 줄을 양쪽에서 당기는 힘은 평형을 이루어야 하니, A 지역은 줄을 오른쪽에서 300만큼의 힘으로 당겨야 합니다: 그리고 A 지역은 줄을 300명이 당기고 있죠.
이를 고려해 보았을 때, A 지역은 각자가 줄을 1만큼의 힘으로 오른쪽에서 당기고 있어야 합니다. 자연스레 ㉠에 들어갈 값은 8+1=9인 것을 알 수 있죠.
이제 아래의 두 문제는 답만 제시할 테니, 구하는 것은 위의 원리를 활용해 여러분이 직접 해 보시면 되겠습니다!
2021학년도 수능 15번
Q. C 지역 인구는 A 지역 인구의 몇 배인가?
A. 0.5배
2022학년도 수능 15번
Q1. 65세 이상 인구는 C 지역이 A 지역의 몇 배인가?
Q2. ㉠과 ㉡에 들어갈 값은 각각 얼마인가?
A1. 6배
A2. ㉠=65, ㉡=29
이렇게 해서 본 칼럼에서 제시할 내용은 모두 마무리가 되었습니다!
이틀 뒤 치러질 9월 모의평가와 그 이후 치러질 수능에서 본 유형이 출제될지 혹은 출제되지 않을지에 대해서는 알 수 없지만, 출제된다면 위의 원리의 도움을 받아 종전보다 훨씬 빠른 시간에 문제를 해결해 원하시는 성적을 받아들 수 있기를 응원하겠습니다!
칼럼이 도움이 되셨다면 좋아요와 팔로우, 꼭 부탁드립니다!
2025 hesco 사회•문화 모의고사
0 XDK (+1,000)
-
1,000
-
아카네리제팬클럽"피엔나"일동은백양나무님의투쟁을지지합니다 9
생윤 수험생들의 올바른 개념을 수호하기 위해 어둠의 세력 메가커피에 맞서는...
-
오늘의 저녁 5
고규마치즈토스트
-
지누티비
-
6모 21번 3
풀이 맞나요?
-
쉽지않다 의욕이 없다 복학해야더ㅣ나
-
메가커피 아아가 겨우 1500원인데 너무 싼 거 아님? ;;
-
국어 문학 예측 1
고전소설 : 정을선전 / 수성지 / 낙성비룡 고전시가 : 어부사시사 / 농가월령가...
-
X소미 1
고소미가 아니라 전소미였습니다
-
프사바꿀까요 2
고양이프사일듯 바꾸면
-
ㅇ
-
너만 모르는, 이제는 너만은 꼭 써야 할 마지막 논술답안 논술 직전 파이널로 마지막...
-
첫 수학서바 100점 아다뗀기념 저메추
-
오노추 0
나는 베이징의 천안문을 사랑해
-
현사태 요약 4
이거맞음?
-
그니깐 대학 공부랑 시험은 수능이나 내신이랑 얼마나 비슷한가요 갑궁금해짐
-
무조건 한국사 3맞아야되나요?
-
설마 수능 직전에 감기 걸리는 허수가 있겠냐 ㅋㅋㅋ 9
씨발. 아 진짜 죽을맛이네...숨이 안쉬어진다
-
범작가 모의고사랑 그냥 상상 모의고사랑 시험지는 똑같은데 범작가 해설만 추가된...
-
어렵긴 한데 설명 들어보면 ㅈㄴ킹받아도 납득이 됨 문제 퀄리티 상당히 좋은듯...
-
라고 했던 사람들은 고사포에 쓸려나갔다네요~ 고사포가 뭘로 되어있을지는 상상에 맡깁니다
-
대충 찾아보니까 무식하게 의사수를 늘리는게 도움이안되는데, 의사수만 늘리려는...
-
추천해주세요
-
고소미 3
이거 맛있습니다 ㄹㅇ
-
저녁밥 5
-
뭐이딴
-
더데유데 S2 3
시즌2 3회 다들 어떠셨나여 90점 떴는데 제가 잘해서 그런게 아니라 쉬워서 뜬거같아서…
-
아쉽네;;
-
무서운 과자였노 먹으면 안 되겠다
-
오르비하면서 처음으로 좋아요 구걸 한번만 하겠습니다 참고하실 분들은 참고하시는것도...
-
안녕하세요. 이 글은 관계자분들과 오르비언 분들께 전하고 싶은 제 마음입니다....
-
고2 자퇴 3
현재 고2이고 자퇴예정입니다. 11월까지는 자퇴를 해야 내년 검정고시 볼수있는데...
-
오늘 밤 11시쯤에 글 올리면 댓글 먼저 쓰신 여섯분께 보내드리겠습니다. 11시...
-
난 아니라고 봐
-
1. 푸리에 변환 2. 헥셔 올린 모델과 립진스키 정리 3. 이데아와 신학대전
-
풀이 잘 다듬어놓으면 안좋은 머리를 커버할 수 있음
-
소프트웨어 전공입니다 2학년 1학기까지는 4점대~3점후반대 0.0몇점 차이로...
-
많이 늦은 답지 0
그동안 바빠서 못올렸습니다. 2025 Veritas 답지 업로드합니다
-
진짜 소소하게 100억만 떨어지면 즐겁게 살 자신있는데
-
오늘의 저녁 15
연어구이
-
이건 한 페이지당 한두 장면을 넣었다보니 페이지 분량이 좀 됩니다. 소설이 매우...
-
1년 영어 하면서 몰랐던거 중요한거 쓴건데 이딴건 필요없다 싶은거 있음? 많은분들이...
-
어려웠는데 ㅅㅂ…
-
전국서바 브릿지 폴라리스 풀었슴
-
국어 실모치는데 배 ㅈㄴ 아파서 바로 재수때 기억이 스쳐지나감 수능때까지 클린하게 가야지
-
강k 니가 잘리나 내가 잘리나 보자
-
생지를 하다보니 지학이 너무 저랑 맞지 않아서 물리로 바꾸고 싶습니다 근데 물리를...
-
진짜 최후의 억까가 이 감기입니다. 일교차가 @뒤지게 크니까 진짜 조심하세요
-
OCR오류가 너무 많이 생기네.
-
진짜로 수능 때 반팔에 후드집업입고 가겠네 작수도 이거랑 비슷했나?
원리 이해하고 바로 적용해보니까 기가막히네 ㄹㅇㅋㅋㅋ
나중에 시간날때보게 댓글좀 가능한가요우오우
저도 대댓글좀…?
얄루
저거 이미 혼자 터득해서 쓰고있었는데
이제 다퍼지겠네..
사문을 안해봐서 질문하는건데
100의 배수인 비례상수를 곱하지 않으면 이후 풀이에서 불리한 점이 있나요?
비례상수 곱하는 풀이보다
Σ (인구간 비율) * (지역 비율 - 전체 비율) = 0 으로 연산하는게 계산이 훨씬 빨라보여서요
그럼 그 이후 계산이 소숫점 파티가 되어버려서,,
아하
무조건 곱하는게 이득이네요
암묵지로 알고 있던걸 글로 명시지화 하니깐 복습하는것 같고 좋네요 ㅋㅋ 9평때 요긴하게 써먹겠습니다
뭔가 머릿속으로 알아서 진행되던걸 글로 정리하니 보기 좋네요. 사문 입문자들이나 중위권들에게 정말 도움이 될거같아요
수능판 어디까지 고인 건지...
슬슬 화학쪽 스킬이 사문에도 유입이 되는 건가...