올바른 연계교재의 활용법-수학
필수: 없음
권장: 수능특강 전 시리즈, 수능완성
선택: 없음
굳이: 없음
수학 영역에서의 연계 양상은 ’아이디어 연계‘의 여섯 글자로 요약할 수 있습니다: 이는 말 그대로 연계교재에 수록된 문제에서 중요하게 다루어진 아이디어가 수능 또는 모의고사에 연계가 되어 출제된다는 이야기이죠.
문제의 아이디어라 함은 문제에서 주어진 상황 또는 표현을 일컫는 것으로, 이러한 상황 또는 표현에 어떻게 대응을 해야 하는지에 관한 아이디어를 연계교재 학습을 통해 미리 습득해 갈 수 있는 것이죠.
우선, 수학에서 연계가 어떻게 이루어지는지에 대한 실제 예시를 한 번 보도록 합시다.
위 예시를 보면, EBS 연계교재에서 ’원 안에 내접한 사각형‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제된 것을 확인할 수 있습니다.
원 안에 내접한 사각형을 마주했을 때 어떻게 해야 하는지에 관한 대응 방법(다른 말로는 행동 영역이라고 하죠)을 위 문제를 통해 미리 습득해 둔 학생들은 아래 문제를 마주했을 때 더 수월하게 풀어 나갈 수 있었을 것입니다.
수학 영역에서 EBS 연계가 이루어진 몇 개의 예시를 더 살펴봅시다.
2024학년도 수능완성에 출제된 ’주어진 범위 하에서 최댓값과 최솟값‘ 상황의 문제위 예시에서는 EBS 연계교재에서 ’주어진 범위 하에서 최댓값과 최솟값‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제되었습니다.
이 예시에서도 역시 전자를 통해 해당 아이디어에 대한 대응 방법을 익힌 학생들은 후자를 마주했을 때 더 쉽게 풀어 나갈 수 있었겠죠.
그럼, 수학 영역에서의 이러한 연계 양상은 수학 1에서만 적용이 되는 것일까요?
물론 아닙니다: 이 글을 읽는 여러분들 중 이러한 의문을 가지는 분들이 있을 수도 있으므로, 수학 2에서의 연계 양상도 한 번 확인을 해 보도록 합시다.
2023학년도 수능특강에 출제된 ’정적분으로 정의된 함수‘ 상황의 문제
2023학년도 6월 평가원에 유사한 상황 + 유사한 선지(ㄱ, ㄴ)이 연계되어 출제된 모습이다.
수학 2에서도 수학 1에서와 유사한 형식으로 연계가 이루어진다는 것을 위의 예시를 통해 확인할 수 있습니다.
그리고 이에 더해서, 이 예시에서는 ㄱ, ㄴ 선지도 굉장히 유사한 모습으로 연계가 되어 출제가 된 것을 확인할 수 있죠.
여기에 더해서, 선택과목에서의 연계 양상도 한 번 확인해 보도록 합시다.
2024학년도 수능완성에 출제된 확률과 통계 문항2024학년도 수능에 유사하게 연계되어 출제된 문항
2024학년도 수능완성에 출제된 미적분 두 문항
2024학년도 수능에 두 문항이 유사하게 연계되어 출제된 문항
2024학년도 수능특강에 출제된 기하 문항
위의 각 선택과목에서의 연계 양상에서도 공통과목(수학 1, 2)에서와 유사한 양상으로 연계가 되는 것을 확인할 수 있습니다.
각 선택과목의 구체적인 개념을 학습하지 않았을지라도, 문제의 생김새만 보고도 이 문항에서는 어느 부분이 연계가 되어 출제되었는지를 대략적으로 파악할 수 있는 모습이죠.
이렇게 수학 영역에서는 연계교재에 있는 문항의 아이디어를 가져와 유사하게 출제하는 연계 방식이 채택되고 있고, 그에 따라서 연계 학습을 할 때에는 각 문항에서 활용된 아이디어와 그에 대한 대응 방법(행동 영역)에 대한 이해를 갖추는 방향으로 학습을 해야 하겠죠.
위의 대응 방법을 활용함으로써 23수능에 출제되었던 다음의 문항을 해결할 수 있는 중요한 키포인트를 발견할 수 있는 것이죠.
마치 기출 학습을 하면서 지금까지 본 적 없던 아이디어를 활용한 문항이 등장했을 때 그에 대한 행동 영역을 수립해 두듯이, 연계교재 학습을 하면서도 똑같은 방식으로 행동 영역을 수립해 두면 되는 것입니다.
2024학년도 6평에 출제된, 9번이지만 오답률 60%를 기록한 문항
한 가지 예시를 더 살펴봅시다: 위 문제는 2024학년도 6평에 출제된, 수열의 합을 일반항 형태로 바꾼 뒤 부분분수를 이용하여 답을 구해야 하는 문항으로, 9번답게 간단한 형태였으나 의외로 EBSi 기준 60%의 오답률을 기록해 많은 학생들의 발목을 잡았던 문항입니다.
아이디어만 떠올리면 바로 풀 수 있는 문제임에도 그렇게 많은 학생들이 걸려 넘어졌다는 것은, 그 문제의 아이디어 자체가 학생들에게 낯설게 다가왔다는 이야기로 해석할 수 있습니다.
앞에서 제시한 문제는 2024학년도 수능특강 예제에 등장한 위 문제를 연계해서 출제한 것이다.
그러나 해당 문제에서 활용된 아이디어는 이미 2024학년도 수능특강 예제 문제에서 등장한 적 있던 아이디어로, ’아이디어 활용‘이라는 수학 영역의 연계 양상이 정확하게 반영되어 있는 문제였습니다.
위 예제를 활용해 해당 아이디어에 대한 행동 영역 - ’수열의 합이 등장하면 (n-1)을 대입하고 빼 일반항을 구하기, 부분분수 형태가 등장하면 식을 그에 맞춰서 변형하기‘ 를 올바르게 수립해 두었다면, 오답률 60%를 기록한 나름 고난도 문제를 어려움 없이 바로 풀어낼 수 있었던 것입니다.
이렇듯이 수학 과목에 있어서 EBS 연계 교재에 등장한 아이디어들과 그에 대한 행동 영역을 제대로 정리해 둔다면, 실제 시험지를 마주함에 있어 도움을 받을 수 있는 부분이 분명히 존재합니다.
특히나 흔히 말하는 ’신유형‘ 문항이 연계교재에 등장했을 때는 그 문항이 연계되어 등장했을 때 파괴력이 상당할 것이므로, 이러한 경우에는 연계 공부를 해 두는 데 더 크게 힘써둘 필요가 있습니다.
그리고 이러한 방식으로 연계 학습을 해 두었을 때 여러분이 얻을 수 있는 효용은 다른 과목과 비교해 봐도 더하면 더했지 결코 밀리지 않는 수준입니다.
물론 지문 자체가 그대로 출제되기 십상인 국어 문학에 비해서는 그 효용이 밀릴 수밖에 없지만, 소재 연계에서 끝나는 국어 독서나 화법과 작문, 매체에 비해서는 확실히 높은 효용을 가지고 있고, 언어와 비교해도 결코 밀리지 않는 수준이라고 단언할 수 있습니다.
그렇기에 기출 학습도 겨우 끝낼 수 있을 정도로 시간이 촉박한 것이 아니라면, 수학 영역에 있어서는 가능한 한 시간을 내서 연계교재를 구매하고 위에서 제시한 방법을 따라 유의미한 연계 교재 학습을 진행하시는 것을 강력하게 추천드립니다.
팔로우와 좋아요, 댓글은 칼럼러에게 큰 힘이 됩니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일반 PN접합 다이오드도 순방향 바이어스 걸렸을 때 LED처럼 자유전자의 에너지가 낮아지나요?
-
ㅈㄱㄴ
-
www.instagram.com/ijeoxen56/
-
설대 철학ㄱㄴ? 1
오직 '인문' +내신 일반고 3.5 3.5 6.9 정도인데 cc뜨나요?
-
소신 발언) 노잼임
-
협박 방법: “수업 안 나오면 결석처리됩니다“ 걍 개웃김 ㅋㅋㅋㅋㅋ
-
ㅠ
-
그냥 학교생활 하고 중간 기말때 시험 공부하고 나머지에 수능 준비 하는 거임..?
-
되려나요
-
팀플 재밌긴 한데 힘들다 ... ㅋㅋ
-
고2 자퇴생이고 내신때 어느정도 했어도 이제 다 까먹었을거라 노베랑 다름없는데 일단...
-
고속 표점 입력 0
고속에서 원점수 입력해서 나온 표점과 메가에서 나온 표점이 상당히 차이가 잇는데...
-
생1 아주 오래전 내신에서만 해보고 아예 해본적이 없는데 이번 수능에서는 화1이랑...
-
문제집 정리된 것 풀어본 후에 수분감으로 추가학습할 예정입니다. 기출문제집 한온기랑...
-
수능 보느라 3년은빨리 늙은듯 스트레스로
-
후쿠오카에서 망나뇽 이상해꽃 한카라이스 나온다고 해서 기대 했더니 ㅇ글로벌은...
-
3모 깔끔하게 만점받고 입시흐름 타봅시다!
-
그냥 물리할란다
-
위에꺼는 텔그 기준이고, 진학사는 처음엔 3칸이었는데 지금은 6칸이고 실제 지원자...
-
수학을 못보면 원래 다 불리하다뜨나요 진짜 개너무하네 ㅡ..ㅡ
-
학교 동기들이나 친구, 동생들이 의대장기휴학하니까 군대가려고방향을틀더니 많이...
-
국어 커리 추천 0
11모 1컷 / 25수능 화작 86 고1 겨울방학에 강기본 완강하고 고2 여름방학에...
-
연고대 목표로 삼반수 경험담점...
-
어느 쪽이 더 잘 맞췄나? 파란색으로 칠한 것이 실제 등급컷과 유사하게 예측한...
-
언제쯤 오르비식 노베가 될까
-
불안한게 없어서 갑자기 불안해짐 너무 바쁘게 살아서 그런거같음... 쉬엄쉬엄하자~
-
다음주부터 심찬우 잡도해 들어갈 예정.
-
과외돌이는 친구 동생 (고1) 원래 알던 동생이라 마음은 좀 편했음 시험범위가...
-
역대급 어그로
-
컨설팅 필요 없움?
-
쫄보의심장 on
-
진짜 고민 ㅈㄴ 많이 하다가 3장 다 지름. 칸수는 212였나 213인가로 기억함...
-
나는 왜 성숙하지 못할까
-
구마유시한테는 음료수 몸에 안좋다고 물이라는 좋은 음료 어쩌고 저쩌고 해놓고...
-
서연고서성한중에 하나는 역대급 핵빵꾸 날거같음
-
ㄱㄱㄱ
-
자연계는 있는데 인문계열은 안보이네요 ㅠ
-
ㅇㅇ
-
04년생 댓이나 쪽지좀 사반수 +1 무휴반 생각있음? 뜰거임? 어떡할거임
-
150분을 갇혀있었어
-
S대 내가 간다 1
성균관대.
-
혼자 가사 쓰고 노래 부르던 아파트의 침대는 생각보다 더따뜻해서 1
쵸파모자쓰고노래부르던놈받아초코파이500개이런가사밖에못써
-
처음엔 시간 재고 풀고 두 번째 풀 땐 시간 무제한으로 두고 풀기 이렇게 하면...
-
역대 15번 귀납 기출들이랑 비교하면 난이도 어떰? 비슷하다고 생각함?
-
조폭임?
-
줄어들거나 아예 안뽑으면 어쩌지
다른 과목도 기대하겠습니다
감사합니다! 사문 드가자.