7月 기하 28, 29, 30 Solution
공통 영역에서는 변별 문항으로는 잘 이용되지 않던 소재들 (22번 곱의 연속성)과 예전에 출제되었던 기출 아이디어들 (12번 동일 모형 그래프 적분)등 낯섦과 익숙함이 공존하는 바람직한? 시험지었습니다.
선택과목에 주목할 필요가 있습니다. 29번은 전형적이지만 28번 30번은 기출의 대칭성 아이디어를 차용해 해결할 수 있거나, 혹은 교과외 공간벡터가 유리하게 작용하는 문제입니다. 이번 28번, 30번 풀이는 해설지와 다르게 배워갈 점이 있으시리라 생각하기에 자세히 해설해보도록 하겠습니다.
이제 문제를 보시겠습니다. :)
28. 이차곡선의 대칭성, 이차곡선의 정의요소, 기하 해석
사실 이 문항이 기하 시험지를 운영하는데 기세를 꺾거나 살리는 치명적인 문제였다고 생각합니다.
저도 시간을 재고 풀면서, 처음에 바로 보이지 않아 패스했던 문항입니다.
남은 문제를 해결한 후 돌아와서, 90"에 주목, 이차곡선의 대칭성을 연상하며 FS"을 FR을 대칭해 그렸더니 너무나 친숙한 문제로 바뀌었습니다.
2018 학년도 수능에서 선배님들의 멘탈을 터뜨린 3점 이차곡선 문제, 이 역시 F'Q를 대칭한 선 하나를 그리는것이 알파이자 오메가였습니다. 역시 위 28번 문항은 아래 27번과 같은 세팅인데, 원을 숨겨둔 것입니다!
1. 이차곡선의 대칭성 -> FS"작도
2. 한 정점에서 떨어진 거리가 같은 세 점 -> 원의 결정조건
3. 원 밖에서 그은 접선과 접점들 -> 합동 삼각형 제조기 (길이 이동 틀)
원의 반지름을 r, F'S=l이라 정의하면 원 밖에서 그은 접선들이 이루는 삼각형은 합동이기에, F'S=F'S"=l, PS=PR=r 이 되고,
이차곡선의 대칭성에 의해 F'S"의 길이는 FR과 같으므로, FP의 길이를 주변 길이를 이용해 표현할 수 있습니다.
4. 이차곡선의 정의 이용하기 -> r=a를 얻습니다.
5. 주어진 기하관계에 주목하기 -> 닮음 삼각형 QSA, QPF에서 삼각비를 추출합니다. l=3/2 a를 얻습니다.
6. 이차곡선의 초점 정의 이용 -> 직각삼각형 F'FP 에서 피타고라스를 사용하면 구하는 값을 얻을 수 있습니다.
29. 벡터 방정식, 벡터의 자취가 나타내는 도형, 성분화
1. [조건 뜯기] : 내적이 0 -> 원의 등장 조건, y단위벡터와의 내적이 양수 -> P의 y좌표는 양수인 부분만 살려두기
2. 벡터 식조작 -> P가 궁금하니, 우변을 P에 대해 정리하기 -> QP = (1,0) 평행이동 관계를 얻습니다.
3. 그림 작도하기 -> QA = Q가 놓인 원의 반지름 = 2이니, Q가 놓인 반원의 중심을 X라 하면, 삼각형 XAQ는 이등변 삼각형입니다.
4. 명확한 수직의 틀 -> 성분화의 당위성 -> Q, P의 좌표를 구하고 내적하면 결론부를 얻을 수 있습니다.
30. 공간벡터, 성분화, 법선과 방향벡터가 이루는 각
문제의 30번인데.. 물론 정석적으로 끼인 평면을 작도해도 좋지만, 명확한 수직의 틀이 모두 주어졌고 결론부 또한 이루는 각이기에 공간벡터를 이용함이 유리한 세팅입니다.... 평가원에서도 공간벡터가 유용하게 쓰일 수 있는 문제를 통합 이후에도 출제한 바가 있기에.. (22.09.29) 조심스럽지만, 공간벡터를 다루는 방법정도는 이번 기회에 알아가도 괜찮지 않을까 하는 생각이 듭니다..!
1. 좌표축 세팅 -> X, Y, Z 축 잡기, 점들을 공간좌표로 표현하기
2. 수직조건 <=> 벡터의 내적이 0 으로 연산하기 -> h=10을 얻습니다.
3. 평면과 직선이 이루는 코사인 값 <=> 평면의 법선벡터와 직선의 방향벡터가 이루는 사인 값을 이용합니다. *이때 벡터의 방향만이 중요하므로, 벡터의 스케일은 계산하기 편하도록 조절할 수 있어요! :)
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고, 기출학습이 위기상황을 극복하는데 강력한 역할을 함을 알 수 있었습니다. (대칭성을 연상 못하면 해설지처럼 합동 찾으러 가야 합니다..)
30번은 이전에 언급했듯이, 공간벡터를 이용할 수 있는 22.09.29가 떠오르는데 이 역시 정석적인 풀이와 함께 공간벡터 사용법을 알아두면 역시 좋은 풀이를 구사할 수 있습니다.
오늘 하루 모두들 수고하셨어요 ;D
0 XDK (+10,000)
-
10,000
-
하 (논술로) 전과 하고싶은데 ㅠㅠ
-
디시보고 느낀점 2
이런 사람들이 의사가 된다라..
-
지금 진학사변표 0
지금 통합변표인지 분리변표인지 아직 발표안한 대학들은 진학사에서 그냥 자체적용한건가요??
-
옥린 옥루 유씨 오렌지 (이새기가 제일 악질) 이런거 예상하다가 나온거: 똥을 싸질렀다 킥킥
-
메이플 탄지로 3
스우까지 컷 캬캬
-
똑똑한애들이 설공가야됨 36
원래 둔재들이 메디컬가고 진짜 똑똑한 애들이 설공가야된다고 봄 난 범부라 서울대가면...
-
몇개 맞추셨나용….. 인칼분들만 해주세요‘ㅜㅜㅜㅜㅜ 냥논 냥대
-
님들이면 어디감? 참고로 삼수생임
-
국어 선택 0
국어 강사 누구 들을지 고민중인데 주간지랑 이것저것 빵빵해서 김승리 들을까요?...
-
윤도영쌤이 2026년도 탐구선택가이드 올릴때까지 선택미룰것같은데 그동안 국영수만 할까
-
미적 2컷 2
미적 1틀 76점인데 2등급 ㄱㄴ? 표점때문에 가능한가
-
나 답은 맞은거같은데 필력이 개판이라 기대가 안되네
-
고대 사과탐 통합변표 기원 1일차
-
근데 25는 뭔 복을 타고났길래 6,9,수능에 다나오냐 9
그것도 29,30 같은 주요 문항에만
-
일단 3합3 맞췄을 사람들이 많지 않을거고… 수학은 거의 항상 백분위...
-
이거 매년 개정되는 강좌인가요?
-
난 메쟈의 아니면 안가
-
3.8X/4.3 이론물리학 연구실 진학예정 심심합니다. 학업적인 것, 대학생활...
-
질산칼륨
-
고대 세종 약학 11
난이도: 중하 타임어택: 최상 (소문항 10문제를 90분 안에...)
-
3모 88 5모 85 6모 92 7모 92 9모 92 10모 86 수능 100 더프...
-
근데 기하 쉽다는 분들 18
확통이랑 비교하면 또 기하가 확실히 어렵다 생각하시나요?
-
중대 오후 1번 1
4/27나오던데 맞나요?? 뭔가 틀릴거같은데….
-
연인 나이차 12
위아래 몇살이었으면 좋겠음?? 나는 위로 6살이상
-
부엉이가 물에 빠지면? 13
첨부엉 첨부엉 ㅋㅋ
-
허우적허우적 ㅋㅋ
-
미적확통 1
아무리 확통머리가없고 미적공부하면 자연스레 수1수2심화공부된다해도 문과면 닥확통하는게 맞겠죠?
-
흠냐 6
잘 잤나? 다시 잘까 으헤
-
포켓몬 몸부림 6
그 기술 다 쓰면 몸부림 쓰는데 예전에 난천 깰 때 초염몽 몸부림으로 개지랄해서 깨던 기억이 나네
-
문학 공부범 7
이처럼 훌륭한 비석을 남겼다 이부분이 반어법이라는데 그런건 어디서 근거를...
-
241122: 69×7=683 251130: 18^2=364
-
작년에 고대 5점차이는 ㄹㅇ 진짜 너무하긴하네 올해는 통합변표로 가자! 출처: 물리학 1 갤러리
-
한국사의 중요성 5
저 한국사 2라 한국사 1로 바꾸면 제가 이김
-
사탐런 메디컬 2
미적에 사탐끼는거 어떤가요 07이고 미적 안정적으로 1떠요(백분위98이상) 국영은...
-
켄텍 진짜 좋은학교인데
-
'성균관대 예비 25학번 지원자방'으로 옾챗에 검색하시면 뜹니다 링크는 금지어가...
-
신분증 분실 상태로 논술을 쳤는데 학교에 다음주 화요일까지 실물신분증 들고 오래요...
-
논술 감독관 선생님들은 다 그 학과 교수님들인가요? 0
ㅈㄱㄴㅈㄱㄴ
-
이왜진 9
-
짜장 시켰는데 짬뽕왓네 37
그래서 전화했는데 내가 실수로 짬뽕 시킨게 맞앗음..
-
답 숫자 꼬라지 보면 난 무조건 풀다가 삑사리난다 수능에서 저런 숫자 보면 그대로...
-
4 1
4차원
-
가천대 논술 0
연습지 주나요?
-
다름이 아니라 흔히들 말하는 사탐런을 해서 물리학과 or 공대를 지원하려는...
-
냥대 정보시스템 쓴사람 12
없음? 오늘 논술치고왔는데 오르비에 한명도안보이네 생존신고좀
-
멋있는척 2
. 담넘기
-
내 거 니 거 남의 거 앞의 거 아래(의) 거 회사(의) 거 학교(의) 거 뒤의 거...
-
뉴런까지 하면 1등급 됨? 한 두 문제 차이임 물론 고2 모고 기준... 고3은...
-
국어 제외 노베입니다 가능하면 이과도 지원해보고 싶어서 사문+생명 하려는데 메리트...
-
일단 다 풀어야 합격권일듯.. 소문제 하나 못풀었으면 푼건 과정까지 다 맞아야할듯
떳다
고마워요 :)
감사드려요 ㅎㅎ
스포될까봐 오물풍선처럼 댓글창으로 날아옴
헉..
와 진짜 어려워보인다....
23수능과 22수능 기하의 1대 1 내분점 느낌이었네요..!
28번이 치명적인 역할을 했다고 생각해요
약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!약연!!
따봉 눌르고 갑니다
연님?
오 저도 30번 내적으로 풀었어요
님도 30 공벡으로 푸셨네여 ㅋㅋ
셤지 나중에 받고 풀어보는데 28 어디서 많이 본 거에여 ㅎㅎ
요즘 7모 수학은 퀄리티가 꽤 좋네여 저희때는 안 좋았던거같은데
반가워요 :)
반가워요!
고마워요 !
그리운맛
으악 181127이다
제가 이럴려구 이 책을 구매했죠 ㅎㅎ
이책도 ㅎㅎ
멋있어요 선생님
약연님 안녕하세요! 기하왕의 칼럼이라니 이건 구독 안 할 수가 없겠는데요?
아직 배울 점 많은 반 실수입니다..!
앞으로도 열심히 해볼게요 :)
번외질문으로 내년 수능준비중인데 기하 선택하는거 어케생각하시나요??
목표에 따라 다를 것 같습니다..!
수학에서 만점에 가까운 점수를 얻어 수학 빨로 대학을 가는 전략을 구사하기는 무리가 있을 가능성이 높기에..상위권으로 갈수록 수학으로 대학을 가는 전략이 먹히지 않아 아쉬운 순간이 많을거에요..! 만약 수학에서 1등급 정도 받고, 나머지를 에이스 하시는 편이라면 괜찮다고 봅니다.
문디컬목표로 내년시험준비중인데
기하를 했던터라 미적이 힘들어서 바꿔야될지 의문이네요 ㅠㅡㅠ
이미 베이스가 있으시다면 무리해서 바꾸시기보단,
다른 과목에 시간을 투자하는 편이 좋다고 생각해요..!
대표 기하러 약연님ㄷㄷㄷㄷ
이분 과외는 안하시나 너무 황인데 ㄷㄷ..
어느 학원에서 업무 중이라..
조금 여유가 생긴다면 해볼 의향 있어요!
전 30번 담백하게 갔습니다. 한번 더 생각해도 감 안잡혔으면 저도 좌표대입했을 듯..
28은 좀 헤맸네요 회전회오리 발견하자마자 아 18수능...
스고이~
아리가또
멋져요
고마워요 선생님 :)
한황, 기황 약연님 쪽지 좀 드려도될까요..??
네, 제가 답변 드릴 수 있는건 열심히 답변드릴게요 :)
감사합니다감사합니다감사합니다감사합니다사합니다감사합니다
格好いい