6月 기하 28,29,30 Solution
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옯비 오랜만에 오네요 근데 거북이 혹시 내년에 대성에서 인강하나요?
-
님 글 쓴 목록이랑 말투 보면 사회성떨어져서 먹금하고싶은데 글 내용이 너무 얼탱없네
-
안잔다 0
숏치길 잘 했다 진짜 킬마이셀프 해버릴뻔함 이번 숏끝나면 건실하게 살아야겠다 진짜
-
미적 84 1
공 22 미 28 29 30 틀렸는데 백분위 몇 정도 나오려나 1은 안 되겠죠? ㅠ
-
개억까다 진짜
-
이게 말이되냐
-
꿀과목 아닌것같음 ㅅㅂ 배운거에서 안나옴
-
이번수능기준 4등급, 듣기는 항상 다맞는데 18~20, 일치불일치, 43~45...
-
전문대갈건데 6
솔직히 나 예쁘고 돈도 많이 번다는데 하 …. 왜 이 학벌만… 수시 버리지말걸 ㅋ...
-
2일연속 밤새기 0
아침에 몇시간 쪽잠자긴 했는데 힘들다
-
세지친사람 있나 9
요번수능뭔가 이기상 저격같은데...
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 18
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 6
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..