[이동훈t] 기출로 기출 풀기 (241128) 미적분
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옛날엔 부정적이었는데 요새는... 부모재력만 든든하다면 보내는게 좋은거같다...
-
있나요? 저도 붙었는데 붙으신 분 보시면 댓글주세요 ㅎㅎ
-
PTSD 장난아니게 오네
-
서바 라이브나 들을껄 지금 후회중임 괜히 돈 아끼겠다고 혼자 공부한게 좀 비효율적이었는듯
-
근데 다 어려워보이던데 쫄림
-
실모 추천 3
멘탈 깨지는거 상관없음 강k 88~92 백분위 98~100 킬캠시즌2랑 같이풀건데...
-
올해못보면 내년에 또보고 또못보면 내후년에 또보면되지ㄹㅇ 왜 불안한건지 이해가 안되네
-
지금 헤머잼 기간이라 모든게 반값
-
있나..?
-
빨리 끝났으면
-
제2안보는데 보통 몇 시쯤 나올 수 있음?
-
1.5등급 4배 걍 외워야겠다 2.5등급 10배랑 1등급 2.5배만으로는 속도가 느린듯....
-
나는 그걸아는데 왜그랬는지 갈수록 니가 더좋아져
-
ᄇᆞᄅᆞ미 날로 ᄆᆞᅀᆡ엽고 ᄂᆞᆯ카ᄫᅡ디매 모도 곳블 조심ᄒᆞ야 됴히 겨오
-
불꽃가능
-
강의 들을 시간이 없는데 복습편보면서 지문분석해도 되겠죠?
-
작년엔 쉬웠다던데 입장이 반대였나
-
시대=사만다>적중>>>나머지 강k는 ㅁㄹ
-
강k 후반회차 넘사 서바 스피드러너 킬캠 강k 초반 히카 시즌 4 해모 빡모 강x...
-
실감이 안난다 0
너무 불안해서 회피기제인건지 전보다 공부를 덜한건지 실력이 있는건지 없는건지 실감이안난다
-
언매 돌리는게 효율이 높아보이는데... 일단 최근 고난도 기출 풀다가 부족한 파트...
-
작년엔 확통러였는데 항상 70~80점대 머물렀음... 96점 받은게 최고점이고 다른...
-
1. 4월 공군 or 육군 기행병 간다 생각하고, 바로 자격증+헌혈+토익 or...
-
까먹어서 그런지 모르겠는데 중국어 HSK 3급 따도 수능 중국어 개어렵던데...
-
올해 모평 제대로.. 공부
-
쉽게 내면 나름 ㄱㅊ을듯 도형 아무리봐도 여러가지 닮음이나 각 이리저리 찾고...
-
올해현역특) 3
실모는 올해가 처음이라 수학실모난이도는원래이런줄앎 :)
-
II도 있나
-
논술일이 휴무일인데도 영업강행ㄷㄷ
-
그냥 전역하고 복학각
-
님들 근데 9
저만 올해 수학 실모 난이도 미친거같다고 느끼나요 수능때 이러면 안되는데 이러면 복학해야해…
-
상상 5-7,8 1
올해 6모보다 어렵나요?
-
언매미적한국지리사회문화스페인어 ㅋㅋ
-
오르비언 파이팅 이러고 특정당하기
-
에휴이 1
나 혼자 썸이라고 생각했나봄 할일이나 하자
-
들이켜보고싶다
-
개인적으로 그때 제일 시간이 안갔음
-
힘내자요 15
우리 다음주 금요일에는 술 ㅈㄴ 퍼마시자구여
-
어제 오늘 첨풀어보는데 뭔가 풀때는 오 잘풀리네 ㅋㅋ 하면서 푸는데 시간 보면 훌쩍...
-
칭찬좀
-
시간 특 2
수능 직전에 빨리가다가 수능날에는 하루가 되게 길더라 매년 그래왔었음 수능 끝나고...
-
아 개무서워 4
무섭다 무서워
-
쒸불 기하질문 받아달라고 왜 가버리는데
-
님들 이거 앎? 20
페탐에 오르비 이모티콘 스티커마냥 쓸 수 있음 오늘 단체페탐으로 놀다가 처음앎ㅋㅋ
-
음.
-
아님 걍 하던대로?
-
진짜 줫~나 맛있음.. 내일 언매 수특 다 풀고 수완 또 사서 언매만 쭉 풀어봐야지
-
여기 수스퍼거들 ㅈㄴ 많아서 내 말 동의 안 할 거 알지만 나 물수학 기원한다…
-
영어 무조건 1등급이라고 뭐 패러프레이징 레전드라고 얘기 많았었는데 요즘엔 보이지 않으시네
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545