다항식, 다항방정식, 다항함수
다항식입니다. 이런 식으로 생겼습니다.
독립변수 x의 값에 따라 하나의 값이 정해지는
종속변수 y에 대하여 y와 x의 관계를 우리는 함수라 합니다.
정확히는 독립변수 x와 x에 대한 종속변수 y에 대해
y를 x에 대한 함수라고 합니다.
쉽게 말해 x=1 대입했을 때 y값이 정해지면 함수라는 것입니다.
y=x+3은 함수입니다.
x에 뭐 하나 집어넣으면 y도 뭐 하나 나오기 때문입니다.
x^2+y^2=9는 함수가 아닙니다.
x=1 집어넣으면 y값이 2개가 존재하기 때문입니다.
평면 상에서 x^2+y^2=9의 그래프와
x=1의 그래프의 교점이 곧
x^2+y^2=9에 x=1을 대입하는 상황을
뜻합니다. y값은 2루트2 혹은 -2루트2가 됩니다.
(y에 대한 이차방정식의 해를 찾는 과정)
y=루트(9-x^2)은 함수입니다.
x에 뭐 하나 집어넣으면 y도 뭐 하나로 나옵니다.
예를 들어 x=1일 때 y=2루트2이고
x=-1일 때 y=2루트2이기 때문입니다.
보다 자세한 내용은 수학(하)에서 함수 공부할 때
살펴보는 것으로 합시다.
독립변수 x와 종속변수 y에 대해
y가 x에 대한 다항식으로 작성되면
y를 x에 대한 다항함수라고 합니다.
앞서 다항식의 예로 들었던 식들에 관한
다항함수의 그래프가 각각 다음과 같습니다.
이때 일차함수와 이차함수를
중학교와 고등학교 1학년 때 배우고
삼차함수와 사차함수를 고등학교 2학년 때 배웁니다.
일차함수, 이차함수는 '특성이 이러하다' 식으로 배우고
삼차함수, 사차함수는 '도함수'의 개념을 활용해
일차함수, 이차함수의 그래프로부터 그래프를 그립니다.
수학2에서 학습합니다.
이차함수는 보시다시피 빗살무늬토기의 단면처럼 생겼습니다.
최고차항인 이차항의 계수가 양수이면 빗살무늬토기이고
최고차항 계수가 음수이면 뒤집어진 빗살무늬토기입니다.
때로 이렇게 이차함수의 그래프가 x축과 만날 수 있습니다.
다시 말해
어떤 이차함수가 y값으로, 즉
함숫값으로 0을 지니는 때가 존재할 수 있습니다.
이것이 이차방정식입니다.
다시 말해 식을 정리했을 때
한 변에 어떤 문자에 관한 이차식,
다른 변에 0이 위치하도록 할 수 있다면
그 등식을 이차방정식이라고 합니다.
이 방정식을 만족시키는 x값을 찾는 것을
이차방정식의 해를 구한다고 하는데
주어진 이차식을 AB 꼴로 정리할 수 있다면
A=0 or B=0을 만족하는 x값을 찾는 방식,
인수분해를 통해 해를 구할 수 있습니다.
혹은 모든 이차식을 A^2+B 꼴로 변형할 수 있음을
활용할 수도 있습니다. 완전제곱식의 성질을 이용하는 것!
이제 양변에 루트를 씌워주면
경우에 따라 1가지 혹은 2가지 x값을
얻을 수 있습니다. 허수 단위를 도입하여
루트 안이 음수가 될 때도 이차방정식의 근을 논할 수 있습니다.
복소수 범위에서요! 하지만 보통은 실수 범위에서 논합니다.
이를 확장하여 n차 다항식에 대해
n차함수와 n차방정식 모두 논해볼 수 있습니다.
다항함수는 앞서 이야기했듯이 수학2에서 미분을 공부한 후
그래프를 그릴 수 있게 됩니다. 근데 이것은 연습 목적이고
실제로는 컴퓨터 프로그램에 수식 입력하시면 그래프 그려줍니다.
다항방정식은 앞서 보았던 이차방정식의 해를 찾는 과정과 마찬가지로
인수분해를 통해 A=0 or B=0 or C=0 or ... 식의 사고를 활용하거나
특정 차수의 다항식을 특정 형태로 변형할 수 있음을 활용하여
근의 공식이라 부르곤 하는 무언가를 작성해볼 수도 있습니다.
예를 들어 삼차방정식의 근의 공식을 유도해봅시다.
참고로 앞서 봤던 이차방정식의 경우는
이차방정식의 근의 공식이라 부르며 수학(상)에서 학습합니다.
이차방정식의 경우에 (x+A)^2+B=0 꼴로 식을 변형할 수 있음이
근의 공식 유도 과정에 중요하게 존재했었고
삼차방정식의 경우엔 평행이동을 통해 삼차함수의 이차항 계수를 0으로,
혹은 x에 x+k꼴을 대입해 삼차식의 이차항 계수를 0으로 만드는 과정이
근의 공식 유도 과정에 중요하게 존재합니다.
이후 uv=-\frac{1}{3a} \left(c-\frac{b^2}{3a} \right) 을 만족하는
(u, v)에 대해
uv에 w^3을 곱해도 uv이므로
(u, v)와 (uw, vw^2)와 (uw^2, vw)에 대하여
세 가지 순서쌍에 대해 하나로 묶인 순서쌍의 두 값끼리
더해준 것이 삼차방정식의 복소수 범위에서의
세 근 (일반해) 이 된다.
사차방정식은 각자 찾아보는 것으로 하고
5차 이상의 다항방정식의 근의 공식은
존재하지 않는다고 하는데...
자세한 것은 갈루아 이론과 등등을 찾아보는 것으로 합시다.
아무튼 다항방정식의 근의 공식은 4차 이하의 다항방정식에 대해
유도할 수 있으며 교육과정 내에서는 1, 2차 방정식의 근의 공식까지
학습하고 3, 4차 방정식의 근의 공식은 배우지 않는다는 것.
3, 4차 방정식의 해를 구할 때는 특수한 방법들로 풀리는 경우만을
다룬다... 정도로 기억해두시면 되겠습니다.
즉, 해의 존재성을 따지기보다 공부한 방법론 잘 적용하는 것이
고등학교 1학년 수학의 목표이다!라고도 한 번 얘기해볼 수 있겠네요.
p.s.
고1 수학에서 학습하는 대부분의 곱셈공식, 인수분해 공식은
분배법칙에 따라 직접 전개해봄으로써 자연스레 유도해보고
외울 수 있다고 느꼈습니다.
그런데 저 두 개는 '이걸 어떻게 떠올리지' 싶은 느낌이
조금 더 강하다고 생각해서 그냥 외워주시면 좋겠습니다.
이런 식의 사고의 흐름도 이어가볼 수 있겠죠 ㅎㅎ
마지막 a=b=c 부분은 '만약 x^2 꼴이 0이 아닌 값을 지니면?'이라는
질문을 3번 반복해보시면 좋겠습니다.
귀류법이라고도 합니다.
후에 체계적인 경우의 수 분류가 필요한
귀납적으로 정의된 수열 문항과
다항함수 그래프 개형 추론 문항 등에서
유용하게 쓰이는 사고 과정이니
관심 갖고 지켜보시는 것도 좋겠습니다.
수능 수학에서뿐만 아니라 일상에서도
발생할 수 있는 다양한 경우의 수에 대해
어쩌지 어쩌지 하고 있을 시간에
일단 뭐 하나 잡아서 해보고
되면 좋고 안되면 다른 방법을 시도해보는 식의...
사고 과정으로 이어서 바라볼 수도 있으니
귀류법 자체를 찾아보시는 것도 좋겠습니다.
가장 흔한 사례는 루트2가 왜 무리수인지를 증명하는 부분!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인생업적 2
국어 백분위 등차수열임
-
문신하고시ㅠ어요 10
선택적으로 보여줄 수 있는 곳에 하면 별로 양아치같ㄴ진 않겠죠?? 가슴에...
-
이 분들 이제 안오시나?
-
옯린이 약 2주만에 26렙가버림
-
인생 최대 업적 9
화학1 수능 1등급 …….
-
인생 업적이라 해봤자 병장 만기전역 186cm 이딴거 뿐임
-
인생 최대 업적 4
”오르비 팔로워 236명“
-
나타샤를 사랑은 하고 눈은 푹푹 날리고 나는 혼자 쓸쓸히 앉어 소주를 마신다 소주를...
-
공교육이 커버하기에는 수능이라는 시험이 너무 허들이 높아짐 교사가 멍청해서 안 된다...
-
인최업 2
-
과탐 안고 가야겠다
-
인생업적 1
연마다 학교 당 1~2명 선정하는 장학회 장학생 된 거 그 덕에 4년 전액장학금
-
1차 목표..
-
그냥 여기서 맨날 징징글 쓰는게 인생업적임 ㅇㅇ
-
학창시절 나대지 않은 결과 반장 부반장 및 각종 집단의 우두머리 경험 0회 코로나...
-
08년생 예비 고2 학생입니다. 고등학교 올라와서 공부를 하지 않았고 내신은 평균...
-
놀랍게도 우리아빠가 알고있는 대학은 서연고 3개였음
-
인생업적 0
미필 한 애니만 10번본 적 있음 음.. 오늘 밥맛있게 먹음뇨
-
인생업적 1
"지상최강의 딸잡이 문품번도 울고갈 전섭최강 품번리스트"
-
대개 하루 진도를 어떤 식으로 꾸려가시나요 준비해갈때 독서 문학 각 몇 지문씩...
-
사1과1이 낫나요, 아니면 사2가 낫나요? 지금 수학 백분위 89-92 진동합니다....
-
제 최대업적은 재수때 자존심 버리고 사탐런. 이상.
-
왜 클릭?
-
프사와 오뿡이를 동일시하는중이다
-
맞팔해요 1
-
인최업 나열 3
고등학교 등수 10위 이내 유지 고삼 1학기 전교1등 찍어봄 수시 딸깍으로 연대감...
-
본인 인생 업적 0
초등학교때 공부 잘하게 생겼다고 반장됨 마침 박근혜 정부 탄핵시기라 반장되고 부반장...
-
인생업적이 왜 필요해 14
그냥 평범하게 흘러가는대로 사는것도 좋아
-
또 피곤하네
-
내일부터 달린다 0
TEAM07분들 제발 제 자리 하나만 남겨주세요..ㅠ
-
어딜 감히 날 가르쳐 내가 제일 잘하는데<<<실제 마인드였음...
-
내 인생 업적 2
-
확대수술하면 4
길이는 못늘리나요? 오로지 두께인가요?
-
어딜가도 내신 5점대일거면 개추 ㅋㅋ
-
왜 다들 김범준 그래프분리만 생각하너 병훈쌤도 설명 해주는데 이게 프레임인가
-
수시충은 그런 거 하다가는 저격 먹을까봐 못한다는 거임 나는.. 진또배기.. 저능아다..
-
병장 만기전역 << 주면 가짐?
-
강대 1학년 입학예정인데 새터해주나요??
-
인생업적 12
전교회장 1회 반장 3회 부반장 2회 운동부 주장 1회 현역 정시러로 한번에 감
-
커리어하이 7
유치원때 부잣집딸한테 고백받음
-
너무하지 않나 물론 대학 자율이니까 할 말은 없긴 한데 출결 이런 것도 아니고 내신...
-
근데 이거 팔로우 받으면 제가 글 쓸 때마다 알림 감? 3
그건 너무 이상한 느낌인데
-
새터 걱정 ㄴㄴ 17
어차피 님들 다 강대 시대 다녔잖아요 재수생들 시대얘기 ㅈㄴ 하면서 빠르게 친해짐
-
진짜머지
-
과고 영재교 친구들과 학점경쟁을 할 자신이 없었음... 미적 물리에서 썰릴 거 같아서 옴
첫번째 댓글의 주인공이 되어보세요.