[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건 제가 과거에 쓴 글입니다 아무리 생각해도 기하가 개꿀인 것...
-
들으면서 쎈 모르는 거 없게 풀고 마더텅으로 기출 한 3회독 한 다음에...
-
올해 유독 많이 느끼는 듯
-
여친짤 ㅇㅇ
-
미적 확통 비교 3
미적 1틀: 141 확통 0틀: 140 확통 1틀: 138 미적 2틀: 137 확통...
-
9칸짜리 몇 칸으로 떨어질까요ㅠㅠ
-
수학작수 92 이번 100이긴한데 영재고랑비빌만큼 잘하진않습니다 3합3 최저는 맞췄고요
-
뿔테안경<- 치트키 엄마한테 너무 미안해서 번호 못 물어봄ㅠㅠㅠㅠㅠㅠ ㅅㅂ대학이나...
-
블랙러시안 0
이거 맛있는거 같아요
-
자기 무조건 잘났네 자긴 손해보고 사네뭐네 하는것들은 그냥 사회에서 도태되는게 맞다고 생각해요
-
50일 수학 끝냈는데 수꼭필 듣는게 좋나요? 다른과목들도 부족해서 시간이...
-
네 궁그매요
-
야밤의 질받 10
날이면 날마다 오는 질받이 아닙니다
-
뻥임뇨
-
현재 제 성적이구 어문계열로 논술 넣엇는데 텔그에서 93%가 뜨더라구요.....
-
전전, 컴공 갈 놈들은 물리 말고 코딩 공부도 방학에 해라.. 4
진짜 노베로 가면 죽는다.. 난 그걸 못 버텨서 공대 탈출하고 수능판으로 다시 왔다
-
현 고1이고 수능 준비 하고 있습니다 수1 수2 미적 개념이랑 유형이랑 2,3 점대...
-
토가나오노 ㅂㅅ새끼 ㅋㅋ
-
화작 확통 영어 사문 정법 77 70 4 41 39 충남, 충북 갈 수 있을까요??
-
가군은 동국대 나군은 지방쪽에 쓰고 다군은 홍대쓰려고하는데 가능성있나요?
-
만나서 한 번 얘기해보고 싶음
-
Puzzle 0
-
인서울 공대나 메티컬은 확통 과탐해도 괜찮을까요 미적을 잘할자신이 없어가지요
-
시대인재 최수준 0
메가에 백호쌤 들을려다 안 맞는 것 같아서 시대인재 라이브로 들을려고 하는데...
-
흐흐
-
짝녀 2
평소엔 먼저 연락도 오고 자주 디엠 보다가 어느 시점부터 하루에 한 번 디엠...
-
기하러 논술 4
한양대 중앙대 세종대 남았는데 미적 안한 기하러 붙을 확률 많이 낫나..? 확통은...
-
미적 할 거 ㅈㄴ 많다면서 걍 관성 따라 미적하는게 이해가 안된다면서 기하를...
-
자러 간다 3
-
그래도 다들 어디서 본 사람들임 ㅋㅋㅋㅋㅋ
-
만약 물리 노베이스인데 공대를 지원할 사람이라면 방학 때 물리 공부하고 들어가셈 안...
-
오프라인이네 이제 나 까인 거임?
-
ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ ㆍ
-
리트를 개나소나 치는 건 맞는데 설로가 의대 가는 것보다 쉽다고? 난 진짜 모르겠음...
-
'섹스 관광 수도' 된 日도쿄…"전 세계男 성매매 원정 온다" 1
홍콩 일간지 사우스차이나모닝포스트(SCMP)가 17일 '아시아의 새로운 섹스 관광의...
-
ㅈㄱㄴ
-
성적표 발표 4
성적 발표일이 12월 6일이잖아요. 그럼 온라인으로는 12월 6일 00시부터 바로...
-
뭐냐 밤맛 존나 잘 느껴지는데 오...
-
가격, 멘탈관리 포함 했을때 뭐가 가장 베스트일까요?저는 약간 다른사람이랑 친목도...
-
문과 고경이면 5
석차가 어느정도 될까요? 문이과 말고 문과로만 보면 1000등 안쪽이겠죠?
-
컷이 40인게 말이안되는데 43봄 ;;
-
진심 무물. 1
에포트쓰고 답변해줌 너무 심심함뇨
-
예비 고2 0
예비 고2 인데 수학 상하 제대로 안되어있는데 파운데이션 상하하고 바로 수1,2...
-
난 20번 맞았으니까 나대지말고 가만히 있어줘 제발
-
미용실 예약완료 1
이제 자야지
-
혹시 중위권/중상위권(2컷~4등급) 학생들이 도움 될만한 수학 공부법(?) 좀 쓰면 수요가 있을까료 5
그냥 요새 상담하는 것 보면 대개 갈피를 못잡는 성적대가 요 성적대인 것 같음
-
탐구 고민 4
현재 약대를 목표로 공부를 하고있는 예비고3입니다. 최근에 과탐 원과목에서 이슈가...
-
김승리 이원화 0
이원화 수업도 ㄱㅊ은가요?? 별로면 그냥 인강으로 들으려고 하는데 딱히 지장 없나요??
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다