수열 기출의 발상 변화 과정 (17~23)
17학년도:
16수능을 마지막으로 여러가지 점화식, 계차수열, 조화수열, 군수열 등이 교육과정에서 없어진 첫 해이다.
(171121. 지금의 15번. 격자점 세기 유형)
지금 우리가 생각하는 수열스러운 킬러 문제는 나오지 않았고, 개정 첫 해 치고는 수열 단원에서 괴랄하거나 신유형인 문제 출제 없이 무난하게 넘어간 해였다.
18학년도 :
(180629. 축차대입 아이디어가 출제되었다.)
(180919. 6평과 같이 축차대입 아이디어가 출제되었다. 6평과 9평을 어렵게 내고 정작 18수능에는 수열 킬러 문제를 출제하지 않았다..)
이전 교육과정에 있는 여러가지 수열의 점화식에서의 핵심 아이디어는 축차대입법이었는데, 해당 단원은 사라졌지만 그 아이디어는 살아남아 출제되었음을 보여주는 문제이다.
이전 교육과정이라 볼 수 있지만 위 두 문제가 출제될 수 있었던 것은 평가원이 축차대입 이라는 아이디어는 특정 단원에 소속되어 있는 것이 아니라 수학 전반적으로 쓰일 수 있는 아이디어로 본 것일 가능성이 있다. 아무튼 축차대입 아이디어는 18학년도를 끝으로 이후에 다시 출제되지 않았다.
19학년도 :
(191129. 이전 교육 과정의 흔적을 완전히 지워버린 문제.)
개정 3년차에 처음으로 수능에 나온 수열 킬러 문제이다. 어려운 4점에는 등차, 등비가 아닌 수열의 점화식이나 귀납 추론이 나올 것이라는 예측을 완벽하게 깨뜨리며 등차,등비만으로 킬러를 낼 수 있음을 보여주었다.
등차수열의 합=등차중항x항의개수 를 떠올렸으면 계산량이 확 줄어들고, 못 떠올렸으면 an의 공차를 일일이 케이스 분류해주면 된다.
18수능 이후로 이전 교육과정 무용론이 대두되던 시기에 평가원이 이 문제로 이전 교육과정은 더 이상 공부할 필요가 없다고 종지부를 찍었다.
20학년도 :
(201121 지금의 15번에 해당하는 문제. 가지치기 문제. 점화식끼리 더한다는 발상.)
등차,등비로 출제한 1년 전 수능과 달리 점화식 문제가 출제되었다. 두 점화식 (가)와 (나)를 더한다는 발상을 할 수 있는지 없는지에 따라 문제 풀이 시간이 천지차이로 갈리게 되는데, 당시엔 두 점화식을 더한다는 발상이 지금처럼 당연한 생각이 아니었다. 이런 발상을 모평도 아닌 수능에 출제했다는 것이 더 당혹스럽게 한다.
이 발상을 떠올리지 못하면 a1부터 a63까지 꼼꼼한 노가다를 통해 전부 다 구해서 더하는 방식으로라도 답을 구할 수는 있던 문제였다.
(직접 해보니 일일이 다 구해서 더하는 데까지 10분 걸렸다. 문제를 처음 읽고 이거 저거 고민하다 63개 항을 모두 구해야 겠다고 결심할 때까지 걸리는 시간을 10분으로 잡으면 합쳐서 20분 정도가 걸린다.)
21학년도 :
(22예비15. 6평 이전에 출제되었다. 현재 수열 킬러 문제의 기본이 되는 역추적과 케이스 분류의 시초가 되는 문제이다.)
역추적이라는 개념이, 이전에는 역추적을 하니 더 편하다 하는 정도였다면 이제는 역추적을 하지 않으면 풀 수 없는 수준에 이르렀다. 다섯번째 항인 5에서 출발해 이전 항들은 어떤 값을 가질 수 있는지 케이스를 분류하고 모순을 찾아내서 완전한 수열을 찾아내라는 문제로, 현재 수능 킬러 문제는 이 문제를 변형한 것에 불과하다 해도 과언이 아니다.
(210921.지금의 15번. 위의 예비평가 문제와 흡사하다.)
a6으로부터 a4와 a5를 케이스 분류로 구한 후에 a3과 a4로 a2를 역추적, 그리고 a2와 a3로 a1을 역추적하는 문제로, 위의 예비평가 문제에서 핵심 아이디어를 차용한 문제이다.
조금 더 발전한 부분은 예비평가는 앞선 한 항의 케이스 분류만 시킨 반면, 이 문제는 a6의 앞선 a4와 a5 두 개의 항의 관계를 케이스 분류 시킨 문제이다.
(210614.지금의 9번.)
(211121.지금의 15번. 가나형에 공통 출제되었다. (가),(나) 까지는 똑같은데 마지막 물어보는 내용이 가형이 조금 더 어려웠다. 사진은 나형문제.)
위의 문제는 당해 6평 문제로, 20 수능을 겪은 학생은 어렵지 않게 세 점화식을 더하는 발상을 떠올려 문제를 풀어냈다. 떠올리지 못했다 해도 하나씩 대입하며 각 항의 값을 구해도 풀리는지라 어렵지 않은 문제였다.
밑의 문제는 당해 수능 문제로, 작년 수능과 올해 6평을 경험한 수험생들은 박스 안 (가), (나)를 보고 반사적으로 두 개를 더할 생각을 했을 것이다. 하지만 작년 수능과 달리 주어진 점화식을 별다른 변형없이 그대로 활용해서 우직하게 밀어붙이면 답이 나오는 문제이다.
22학년도 :
(220915. 예비평가 변형문제. 케이스가 2개로는 부족한가 보다. 이젠 3개다.)
이제는 대세로 굳혀진 역추적과 케이스 분류 문제이다. 이 역시 예비평가 문제를 변형한 문제인데, 이전엔 케이스가 2개였던 것과 달리 이제는 분류되는 케이스가 3개가 되어 문제를 더 복잡하게 만들었다.
다만 반복되는 구조를 집어 넣어 이를 눈치 챘다면 a부터 z까지 모든 경우의 수를 일일이 손으로 쓰지 않아도 문제가 풀린다. 또 다른 풀이로는 an을 x로 an+1을 y처럼 생각해서 그래프를 그려 풀면 가지 치며 푸는 것보다 실수를 줄일 수 있다.
(221121. 또 한번의 반전을 선사하는 평가원이다.)
이제 수열 킬러의 대세가 된 역추적과 케이스 분류를 엄청나게 연습했을 수험생들에게 평가원은 기존에 보기 힘든 낯선 형식으로 수능 시험에서 뒤통수를 친다.
다만 똑같이 뒤통수를 친 19수능, 20수능과 달리 문제 자체가 막 어렵진 않은데, 이런 문제는 어떻게 대비를 한다기 보다는 수에 대한 감각을 갖고 있는 지를 물어보는지라 누군가에게는 아주 어려운 문제였을 것이다.
23학년도 : 17학년도 이래 처음으로 수열 킬러가 6평,9평,수능에 모두 출제되었으며 그 세 문제가 점화식과 케이스 분류라는 같은 형식을 가졌다는 것도 특이한 점이다.
(230615. 이제는 식상해진 케이스 분류 문제에 주기성 발견이라는 요소를 섞어 난도를 끌어올렸다.)
역추적을 배제하고 케이스 분류만 출제한 문제이며, 모든 케이스를 고려 할 시 너무 복잡해져 반복되는 구조를 발견해 주기성임을 떠올려야 하는 문제이다. 직전해 9평처럼 반복되는 구조를 발견하면 계산량이 줄어든다는 점을 반영하였지만, 직전해 9평은 발견 유무가 난도에 큰 영향을 끼치진 않지만 이 문제는 발견하지 못하면 사실상 풀지 못하는 문제이다.
역추적+케이스 분류 시대 시작을 알린 예비평가 문제에서 이제는 반복되는 구조와 주기성 발견까지 추가적으로 해야 하는 시대가 되었음을 알리는 문제이다.
(230915. 힘을 뺀 역추적+케이스 분류+주기성. 앞으론 세 개 모두 힘을 준 문제?)
역추적+케이스 분류+주기성 3개가 모두 종합된 문제이지만, 3개 모두 어렵지 않은 방식으로 출제된 지라 악명 높은 문제가 되지는 못했다. a4와 a8로 r의 값을 확정 짓고 역추적으로 a1, 주기성으로 p의 값을 구해주면 되는 문제.
(231115. 역추적 케이스 분류 문제가 수능에 나온 건 이번이 처음이다. 이전엔 모평에서만 나왔다.)
a7로부터 a6,a5…의 값을 케이스 분류 하며 역추적 해야 하는 문제로, 기존 문제들은 부등식을 이용해 특정 범위로 케이스 분류를 시킨 반면 이 문제는 3의 배수인지 아닌지로 케이스 분류를 해야 하는 정수론적인 성격이 들어있는 것이 가장 큰 차이점이다. 사실 수열에서 약수와 배수 이야기는 이전에 킬러가 아닌 기출 문제에는 자주 등장하였지만 케이스 분류 킬러 문제에 적용된 것은 이것이 처음이다.
식상해진 케이스 분류 유형을 어떻게든 새로운 소재와 결합시켜 고난도로 출제하는 모습을 볼 수 있다.
0 XDK (+1,000)
-
1,000
-
인생이망해서 화는내고싶은데 나때문에망한걸아니까 화낼대상이나밖에없으니까...
-
잡담 태그를 안다는 사람들을 팔취할까 VS 차단할까
-
이미 재능이랑 노력 둘 다 가진 사람들이 다 해먹음 약간 김태희랑 결혼하기 vs...
-
질문할게 없어도 억지로 만들어서 해주세요 질받메타로 가자
-
전 둘 다 ㅈㄴ 못함뇨
-
이재명 2
이재명 싫어하는 이유들 정확히 알려주실 분 ( 진지하게 잘 몰라서 그럼 )
-
노력해보겠다는사람한테 재능타령하면서 포기하라고 하지 않고 노력해서 성공한사람의...
-
좋아요 화력이 이제..
-
제목 : ‘사탐런’
-
제발….,.,.,.,.
-
올해 그냥 브레턴우즈 시즌 2 나왔으면 난 성불이라고 아.
-
힘들어… 0
놀아도 노는 기분이 아니고… 날이 갈수록 에너지가 더 빠지는 느낌이네… 막막하고 내년도 두렵고 참…
-
이 새낀 정책낼때 그냥 김건희 사건 덮을 어그로용도 정도만 생각하는듯
-
Oh <-이 부분이 높다. 3옥도(C5)인데 여기서 힘을 주면(내가 하는 방법)...
-
국어 3-4진동 수학 2-3진동 영어 1-2진동 재종은 시대재종은 못 들어가서 강남하이퍼 생각중
-
아주대 48명 모집 실지원 91명 들어왔으면 표본 찬건가요?
-
공부할 때만 행복한 과목인데
-
바보가 쓴, 바보들을 위한 문학 가이드 (21학년도 9평) 3
들어가기에 앞서, 제 문학 실력의 가장 큰 기반이 되어주신 시대인재 N 재수종합의...
-
됐는데 할지말지 고민되네여
-
수능에서의 운은 0
일단 모의고사 쳤을 때 나오는 점수가 제각각이라는 것도 있지만 그건 답이 없는...
-
현 정부 의료개혁은 백지화될듯. 내년 봄 민주당 집권하면 당장 26년 의대정원...
-
진짜부럽네 의사면허 취소돼도 ^42만 구독자^
-
재능뿐만 아니라 환경까지도 엄청나게 중요하다고 생각하는데 뭐 어쩌겠음 내가 바꿀 수...
-
걍 나랑 다른사람도 많구나 하고 넘김 굳이 키배뜨고 싶지 않달까 어차피 설득될...
-
이번에 법학, 행정, 경행 합쳐서 44명 뽑는 법과 대학 예비 5번 이내로 떴는데...
-
원래 한의대붙어도 약대가실 생각이셨던거에요? 진학사 보니까 사탐한의대컷보다 인설약...
-
좋아 생각을 바꿔봤어 16
누군가의 말에 의하면 난 재능이 있으니 재능없는사람의 마음,생각, 상황을 이해하지...
-
난이도 어느정도 차이나는지 비교좀 부탁
-
진짜모름
-
저 요즘 롤 좀 치는듯
-
카이스트 말고 유지디 기준으로 궁금합니다
-
올해 수능 40만명 정도 봤다하면 20만명정도 진학사 삼? 앞으로 표본들 얼마나 들어올지 궁금해서
-
강대 s2 2
언미영생지 43332인데 강대 s2 성적순전형 가능할까요?? 조기반 갈 생각입니다
-
지금 남아있는 사람은 몇 명 없지않나
-
노력 재능 메타로구나
-
요즘 스키장 개장해도 슬로프가 뭔 2개밖에 안열려있노 ㅜㅜ 걍 자세 감만 잡아야할듯
-
그저 한결같은 wwwww
-
와저는재능없이노력으로해냇어요~~노력티비 이러는게 시름 걍 재능없엇으면 남들처럼...
-
ㅈㄱㄴ
-
좀만기다려
-
멈췄다 습관이 이렇게 무섭습니다 여러분
-
이제 전전중 서연고 서성한의 시대가 온다
-
난 머리 좋은 사람들은 공부할 때 어떨지 궁금하긴함 1
지능영역 4등급인데 난 내 머리가 딸린다는 생각은 물1할때 말곤 못느껴봤는데...
-
이과는 8
군대는 1학년 마치고 가기 2학년 마치고 가면 후회한다네요
-
인하랑 아주 고민하고 있어서 카대 에타에 물어봤는데 이게 옆그레이드라는 신박한...
-
가볍게 봐주세용 저도 그렇고, n수생 분들도 그렇고 수능에 대한 아쉬움이 남는...
-
이게 무슨 메타야....
-
저는 확통도 좋아해요 10
재밌잖음 상방 뚫을려고 미적하긴했는데 둘 다 재밌긴함
-
이해가 안 감 ㅋㅋㅋㅋ
이런 글 좋음
감사합니다!
진짜 제일 싫은 15번 수열
까다롭죠 ㅋㅋ
ㅇㅎ 이렇게 년도별로 보니 신기하네요
이렇게 보면 흐름을 알 수가 있어서 공부할 때 좋죠
작수 15나 6평 15처럼 내면 풀 자신이 없어요ㅜㅜ 수열 넘 어려운것…
둘 다 케이스 분류에 기존 요소를 섞은 유형이니 케이스 분류와 기존 요소 중 어느게 약점인지 파악하시고 연습하시면 돼요!
뭔가케이스분류 ㅈㄴ 좋아하는 듯요
수2나 선택과목 킬러엔 항상 케이스 분류가 들어가는데 수열도 그런 거 보면 진짜 평가원이 케이스 분류는 기본으로 넣는 거 같아요
와 정말 대단한 분석이네요. 잘 봤습니다.
이런 표현까지...감사합니다!