칼럼18) 곡선끼리 접할 때?
오랜만에 오르비에 들어와서 글을 보던 중...
이런 질문 글을 발견했습니다. 그리고 바로 영감이(?) 떠올라서 글을 쓰게 되었습니다.
몇 달 전에 올린 '안 소소한 테크닉' 에서 소개드렸던 내용으로 시작해볼게요. (링크는 첫 댓의 대댓글에!)
이럴 때에는 f(x)는 고정한 뒤에 상수함수 y=m을 움직여가면서 관찰합니다.
이럴 때에는 직선 y=mx에서 기울기를 빙글빙글 돌려가며 관찰해주구요,
이럴 때에는 이차함수를 파닥파닥거리면서 관찰하죠.
때에 따라 상황을 맘대로 바꿔버리기도 합니다.
풀진 않을건데, 아래 문제로 예시를 들어볼게요.
ebs 문제인데요 이 문제가 딱 그러하죠. a를 바꿔줘가면서 확인을 해줘야 하는데, 이걸
이렇게 써서 이차함수 그린 뒤에 삼차함수를 파닥거릴수도 있구요
이렇게 써서 오른쪽 함수 그린 뒤에 y=a를 위아래로 움직여줘도 되겠죠.
이렇게 할 사람이 있나 싶다만 이것도 되긴 되죠 ㅋㅋㅋ
오른쪽 함수 그린 뒤에 a값을 바꿔가며 직선을 빙글빙글 돌려줘도 됩니다.
문제를 풀다보면 이런 관찰을 꽤나 자주 하게 됩니다. 간혹 무조건 (함수)=(상수) 꼴로 바꾸시는 분도 있는데, 개인적으론 비추입니다. 많은 생각을 할 필요 없이 매번 똑같이 푼다는 장점이 있긴 하지만요.
아래 예시를 보실게요.
이걸 계산하는 상황에서 저 왼쪽 놈을 미분하자니... 머리가 아프죠. 이때 이렇게 할 수 있습니다.
와! 계산이 아주 쉬워져요.그림으로 그려서 상황 관찰하기도 수월합니다. 그림 상황에서 이차함수를 더 낮춰서 딱 접하게 되는 상황이 원하는 상황이네요.
x=b에서 미분계수가 같다는 계산을 해봅시다.
간단히 마무리됩니다.
만약 위 상황에서 이렇게 하지 않고 x를 넘겼다면?
아... 이건 여러모로 더 힘듭니다.
(함수)=(상수) 꼴이 늘 좋은 것은 아니란거죠. 상황에 따라 적절하게 변형해야 합니다.
넵 이런 내용이었습니다. 저는 '=상수' 로 두는 비율이 높지 않은 거 같아요. 개인적으로 곡선과 직선을 다루는게 익숙해서이기도 합니다.
직선은 여러분도 이미 다 아실거라 큰 문제가 없으나, 곡선은 정리해야할 포인트가 있습니다.
특히 곡선과 곡선이 접하는 경우는 많이 다뤄보지 않았기에 어색할 수 있죠.
질문자분의 마지막 말도 그런 맥락에서 나온 말 같네요.
그래서 곡선에 대한 제 지식을 좀 전달해드릴까 합니다. 이게 사설이나 n제 풀 때에는 종종 나오는거라 도움이 될 텐데, 수능과 평가원 시험에 도움 되냐 묻는다면... 대답은 no 입니다. 곡선과 곡선이 접하는 상황을 수능에서 낼 거 같진 않아요.
그럼 왜 소개하는거냐... 다음과 같은 의의가 있어서 입니다.
- 본인이 변형하다가 곡선곡선 접하는 경우를 만들어버렸을 때 해결은 봐야죠
- 도함수를 다루는 감각을 키울 수 있음
- 한 번 쯤 궁금해해봤을 내용임. 지적 호기심 충족,,,재밌을 겁니다
- 사설 풀다 빡칠 때 써먹을 수 있음
아 근데 난 필요 없다 싶으시면 안 보셔도 좋을 거 같아요. (좋아요는 눌러주고 가세요 ㅎㅅㅎ)
곡선과 곡선이 접하는 경우는 크게 두 가지로 나눌 수 있습니다.
1. 위볼과 아볼이 접함
딱 이 그림입니다. 전혀 어색한 게 없죠? 이건 그래도 직관적으로 잘 다가오는 편입니다.
문제는 다음 케이스에요.
2. 위볼과 위볼 / 아볼과 아볼이 접함
질문자 분이 보내신 케이스네요. 이 케이스가 어려운 이유는 접하는 부분 주위에서 일어나는 일들이 결정되지 않기 때문이에요.
위 그림처럼 완전히 '내접' 할 수도 있지만
이거처럼 접하면서 뚫고 지나갈수도 있어요. 와 이건 정말 어색하죠?
삼차함수의 변곡접선처럼 뚫고 지나가는 접선의 "곡선 버전"인 셈이에요.
아래 예시를 보겠습니다. (제가 예전에 질문받은 사설 문제입니다.)
사실 문제가 정확히 기억나진 않는데요 상황을 소개해드리자면
(초록색이 지수함수, 검정색이 이차함수)
이렇게 이차함수 f(x)가 y=e^x 함수를 x=0에서 접하면서 뚫고 지나가야 해요. 이처럼 곡선의 변곡점이 아니더라도 접하면서 뚫고 지나가는 상황이 만들어질 수 있습니다.
이럴 때는 어떻게 접근을 하냐...
도함수를 이용해보면 아주 쉽습니다.
(위 그림을 보면서 글을 따라오실게요)
x=0보다 약간 왼쪽에서는 f(x) 미분계수가 더 작고요(더 완만하게 올라오니까요)
x=0에선 미분계수가 같죠.
x=0보다 약간 오른쪽에서도 f(x)의 미분계수가 더 작아야 해요. (더 완만하게 멀어지네요)
즉 x=0 근방에서 e^x의 미분계수가 계속 더 큰겁니다. x=0일때만 잠깐 같은 것이구요.
이걸 도함수의 얘기로 바꿔볼게요.
(초록색이 지수함수의 도함수, 검정색이 이차함수의 도함수)
이차함수의 도함수가 y=x+1이겠죠. 계속 더 아래에 있으려면 이렇게 되어야 합니다. 도함수끼리 접해버리는거죠.
곡선과 곡선이 접하는 경우는 전부 이와 같은 도함수의 얘기로 환원돼요. 도함수 개념을 잘 떠올리시면서 해결하시면 됩니다.
더 보고 싶은 분들을 위해 재밌는 예시 하나를 보여드리고 마무리하겠습니다.
(예시)
우리가 흔히 cosx를 옆에 저 이차함수로 '근사'하죠. 대충 그려봐도 x=0 근처에서 굉장히 비슷하게 생겼습니다. 근데 뭐가 좀 더 위에 있는지 궁금하지 않나요?!
실제로 논술에 종종 나오는 문제인데, 앞서 소개드린 도함수 접근으로 해결가능합니다.
해석을 해볼게요.
x=0+ 에선 이차함수가 더 미계가 작고
x=0- 에선 이차함수가 더 미계가 크네요.
극단적으로 그려보자면 이렇게 되는겁니다. 내접하는 경우네요. cosx가 더 위에 있습니다.
사실 h(x)= cosx-x제곱 함수를 만들어서 h(x)의 도함수를 관찰해도 되는데요, 도함수 감각 잘 살려보기 위해 소개드려봤습니다.
더 관심있으신 분들은 아래 예시도 직접 해보셔요!
전 예전에 1/x와 lnx 중 뭐가 더 가파르게 떨어질까가 궁금했었는데 이게 딱 그 내용을 담고 있습니다.
준비한 내용은 여기까지입니다. 다음에 더 유용한 수학 칼럼으로 찾아뵙겠습니다 :)
좋아요와 팔로우 부탁드려요!
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 밑에 글 땜에 고3 화작 처음 봤는데 왤케 빡셈 0
고1 2랑은 확 다른 거 같네... 뭐이리 미어넣었지
-
안녕하세요 오르비 수학강사 이대은입니다. 오늘은 칼럼이 아니라 수요조사를 위해 글을...
-
원서 영역이 다가오니 재학생도 광기에 물든건가
-
기균 2장하고 안정 하나 쓸건데 어디 써야 될까요 기균이 안될 시에는 안정이...
-
3스나 박고 3떨
-
들어가기전 마지막으로 힘을 받을 수 있을까요
-
만백 컷 상관없이 그냥 문제가 화1이 생1보다 할만하면 이주하고싶음 노베라...
-
언 확 영어 사문 한지 입니다 97 84 2 42 47
-
현역 언미화지 2406 31244 2409 21243 2411 42142 재수...
-
하 ㅅㅂ 3
수학 29번 실수안한 ㄱㄴ 세계로 고속 돌려봤더니 고경제 연초뜨네ㅔㅔㅔㅔㅔ 인생아
-
고전시가 강좌 1
김승리 듣고 있는데 고전시가 강좌는 없으셔서 그런데 김동욱 강민철 김상훈 선생님...
-
[민족고대]25학번 톡방에 초대합니다!(25학번 최다인원)(종합 최다인원)[고려대] 2
안녕하세요, 고려대학교 재삭생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
21수능 22,23,24수능 미응시 2506 2509 25수능
-
시립대 변표 나왔는데 13
시립대 변표 나왔는데 불변인가요 물변인가요?
-
이제 몇시간 뒤면 1차 나오는데 경제학과 빠지신 분 계신가요 ㅠㅠ
-
원서를 처음 써보는 거라 좀 도와주세요.. 예를 들어서 15명 뽑는 학과에서 제가...
-
아 근데 아직도 라인 안 잡으신 분있나요? 12월 14일 업뎃판입니다
-
재수학원 알아보고 잇긴 합니다 그런데 혹시라도 추합에 될수도 있을까요? 답변 감사합니다
-
커뮤에서만큼은 나도 시미켄 반박 안받음
-
사문이랑 지구 둘 다 고인물들 엄청 많이 들어올까요? 사문 지구 정시 의대 삼수...
-
서울대 입학하신거 아니면 웬만하면 학문의 길 따윈 포기하세요 서울대도 못가는...
-
그냥 궁금하네요 인식이 어떤지 솔직히 24학번분들은 별 생각 없으실것같은데 그 위...
-
중고등학생 대상 우정, 추억 관련 초간단 설문조사입니다! 수능끝난 수험생분들도 참여...
-
수능선배 후기 0
**수능선배 재원생 후기 이벤트로 작성합니다 안녕하세요 올해 수능선배 ㄷㅊ점에서...
-
“좋은 아침이다, 3학년 1반 친구들아! 오늘도 산뜻한 조회로 하루의 문을 활짝...
-
올해 내내 화작만 하다가 처음 언매로 돌릴까 고민중인 뉴비인데요. 그냥 깔끔하게...
-
교보문고 출발 5
피램 찾으러 고고씽
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][장학금정보] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
재밋음?
-
경영은 5칸최초합 경제는 4칸불합뜨네 어차피 나중가면 칸수는 떨어지는거 앎 경영이...
-
유루유리 산하이 나츄야츄미 나츄야츄미+ 유루유리 텐 미니유리 오무로가(2024...
-
오늘겁나춥네요 8
-
가자마자 메쟈의 간다는 글 있길래 나옴
-
담배도 안하시고 술은 집에선 안드심 폰케이스는 얼마전에 사드렸는데...
-
일단 지방약수랑 연고공도 공부 못하는 취급 당하는 곳이고 거기 올라오는 말들 보면...
-
듣고 해석하고 복습하고 막 하다보면 1강마다 거의 2.5-3시간 걸리는 거 같은데...
-
겨울 강변 경치 = 낭만 치사량임
-
시킬 게 없네
-
나이스 0
한칸 올랐다 후
-
독서 풀어보려 하는데 어떤가요???
-
하고싶은 공부는 나중에 자리 잡고나서 사이버대학이나 대학원으로 정말 원없이 할 수...
-
이제 고2 되고 강기본 하고있어요 고1 모고 강기본 하기전엔 4,5 떳어요 지금은...
-
ㅈㄱㄴ
-
손시려 ㅅㅂㅅㅂㅅㅂㅅㅂ
-
29번이라기엔 좀 쉽고 27번이라기엔 꽤 어렵고...? 학교 수행용으로 만들었던...
-
자기 실력에 한참 못 미치는 대학을 내보기만 해야하는 성적을 받고서야 이제서야 고교...
-
내 성향이 어떤지 고민해봐야겠음 전 성과가 나와주거나 흥미가 유발되어야 집중 하는 타입이긴 한데
-
낙지에서 0
지균은 아직 정확도 완전 낮다고 봐야겠지?
-
세상의 모든 학문을 배워보고 싶다는 소망이 있어요 근데 미래는 없을거 같긴 해
본문 언급 칼럼입니다
https://orbi.kr/00062385201
확통이라 몬말인지 모르겠네용.. ㅠㅡㅠ
이차함수를 파닥파닥ㅋㅋㅋㅋㅋ
잘 보고 갑니다
파닥파닥 빙글빙글 ㅈㄴ웃기네ㅋㅋㅋㅋㅋ
오 엄청 유익한 글인 것 같아요...