[수학 칼럼] 불연속함수와 연속함수의 곱
안녕하세요? 지인선입니다.
오늘은 함수의 연속, 미분 단원과 관련된 5가지 문제를 풀어보며, 불연속함수와 연속함수의 곱함수에 대한 논의를 해보고자 합니다.
특히, 오개념이 있을 수도 있는 파트여서, 꼭 제대로 알아야 하는 파트입니다.
목차는 다음과 같습니다.
1. 불연속점의 분류와 불연속함수와 연속함수의 곱: 연속성
2. 불연속함수와 연속함수의 곱: 미분가능성
1. 불연속점의 분류와 불연속함수와 연속함수의 곱: 연속성
우선 다음 문장이 참인지 아닌지 판단해볼까요?
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, h(x)=f(x)g(x)가 x=a에서 연속이려면 g(a)=0이다.'
이 문장은 참입니다. 아마 자주 공부하셔서 아는 내용일 겁니다.
그래도, 관련 문제 하나를 풀면서 기억을 상기시켜봅시다.
1) 2016학년도 6월 모의평가 A형 29번
지금 |x^2-2x|의 극댓값이 1이고, x=0과 x=2에서 극소이므로 f(t)는 t=0, t=1에서 불연속입니다.
이 불연속점을 없애주기 위해, g(x)는 g(0)=g(1)=0이 되어야 하고, g(x)=x(x-1)입니다.
8년 전에는 이런 문제가 29번이었네요... ㅠ 고생이 많으십니다 여러분
자 그럼 다음 문장은 참일까요?
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, g(a)=0이면 h(x)=f(x)g(x)가 x=a에서 연속이다.'
이 문장은, 앞의 문장에 역을 취해준 것입니다. 차이점이 보이시죠?
답은 거짓입니다.
이를 이해하기 위해선, 저희는 '불연속'이라는 말을 자세히 들여다볼 필요가 있습니다.
함수 f(x)가 x=a에서 연속이다라고 함은, 다음을 만족한다는 뜻입니다.
딱 한 표현이지만, 주의하셔야 합니다.
극한은 많은 조건을 내포하고 있기 때문입니다.
저 한 줄 조건은 다음과 같은 많은 뜻을 의미합니다.
1) x=a에서 f(x)의 좌극한이 존재하고
2) x=a에서 f(x)의 우극한이 존재하며
3) 좌극한과 우극한 값이 서로 같아서 극한값이 존재하고
4) 극한값이 함숫값과도 같아야 한다.
이 4가지 조건 중 어느 하나라도 만족을 못한다면 x=a에서 연속이 아닙니다.
유식해지는 기분을 느끼게 해드리기 위해, 수학과에서 배운 고오급진 용어를 사용해서 다시 정리를 해드리면
(없는 용어가 아니라, https://ko.wikipedia.org/wiki/%EB%B6%88%EC%97%B0%EC%86%8D%EC%A0%90%EC%9D%98_%EB%B6%84%EB%A5%98
에서 정의된 표현 그대로 사용했습니다.)
1)또는 2)를 만족시키지 못한다면 -> 제 2종 발산형 불연속점(point of infinite discontinuity)
3)을 만족시키지 못하면 -> 제 1종 점프 불연속점(point of jump discontinuity)
4)를 만족시키지 못하면 -> 제 1종 제거 가능 불연속점(point of removable discontinuity)
입니다. (1종과 2종의 구분은 좌극한값, 우극한값 자체가 존재하는지 여부입니다.)
여기서, 앞의 문장
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, g(a)=0이면 h(x)=f(x)g(x)가 x=a에서 연속이다.'
가 거짓인 이유를 알 수 있습니다.
만약 f(x)가 제 2종 발산형 불연속점을 갖는다면, 예를 들어
이라고 했을 때, x=0에서 제 2종 발산형 불연속점이죠?
g(0)=0을 만족시키는 함수 g(x)=x를 곱한다고 해도
이므로, x=0에서 제 1종 점프 불연속입니다. 그러면 저희는 어떻게 해야 할까요?
간단합니다. g(x)=x^2과 같이, 0으로 가는 힘이 더 센 녀석을 만들어주면 됩니다.
만약 g(x)=x^2이라면
이므로, x=0에서 연속이지만 미분불가능하게 되네요.
다음 주제를 다루기 전에 한 술 더 뜹시다. f(x)g(x)가 x=0에서 미분가능하게 하려면 어떻게 해야 할까요?
g(x)=x^2이었다면, x>0에서 f(x)g(x)=x, x<0에서 f(x)g(x)=2x^2이므로, x=0에서의 미분계수가 같지 않네요.
이 때에도, 0으로 가는 힘이 더 센 녀석을 만들어주면 됩니다.
g(x)=x^3이라면
은 미분가능합니다.
여기까지 잘 따라오셨다면 좋은데, 혹여 이런 식으로 성급하게 결론 내리시지 말기를 바랍니다.
'아하 x=a에서 연속이나 미분가능성을 따질 때, 1/(x-a) 같은 녀석이 있다면, 연속을 만들려면 (x-a)^2, 미분가능하게 하려면 (x-a)^3을 곱해야 하는구나!'
바로 반례를 드리겠습니다. 2018년 11월 고2 모의고사 나형 29번입니다.
2) 2018년 11월 고2 모의고사 나형 29번
여기서는, f(x)가 (x-4)^2을 인수로 가지기만 하면 됩니다. 이유는, 추후 설명해드리죠.
우선 답은 입니다.
2. 불연속함수와 연속함수의 곱: 미분가능성
이 주제와 관련하여 가장 큰 영향력을 가진 수능 기출문제를 봅시다.
3) 2020학년도 수능 나형 20번
ㄱ 선지는, 저희가 맨 처음에 다룬
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, h(x)=f(x)g(x)가 x=a에서 연속이려면 g(a)=0이다.'
으로 바로 나옵니다.
ㄴ 선지를 풀 때 주목해야 하는 것은, f(x)는 x=2에서 연속인데 미분가능하지 않다는 것입니다.
물론 x<2와 x>2로 나눠서 도함수 구해서 푸는 것이 ebs 해설의 정석인데요.
첨부해서 보여드리면
계산이 힘들다기보다는, 음... 뭔가 중요한 통찰을 없애버리는 풀이긴 해요.
저는 다르게 풀고 싶습니다. '미분계수의 정의 그 자체'를 이용해서요. (중요)
제 풀이는 다음과 같습니다.
p(x)는 다항식이므로, p(x)=(x-2)Q(x)+R로 나타낼 수 있습니다.
그렇다면,
입니다. 그 전에, 함수 h(x)가 x=2에서 미분가능하다는게 무슨 뜻이죠?
가 존재한다는 것입니다. 그렇다면, 저희는 쉽게
가 x=2에서 미분가능하다는 것을 알 수 있습니다. 왜냐하면, 저 h(x)자리에 그대로 (x-2)Q(x)f(x)를 집어넣으시면, 분모의 x-2가 사리지기 때문입니다.
따라서, p(x)f(x)가 x=2에서 미분가능하려면, (x-2)Q(x)f(x)가 이미 x=2에서 미분가능하므로, Rf(x)또한 x=2에서 미분가능해야 합니다.
이게 가능하려면 R=0이 되어야 하죠? 따라서 p(2)=0입니다.
이런 식으로 '미분계수의 정의 그 자체'를 이용하는 것이 앞으로도 다른 문제에서 큰 도움이 됩니다.
그래야 통찰이 생깁니다.
이런 식으로 풀지 않고, x<2와 x>2로 나눠서 일일히 도함수를 구해서 푼 다음에, 그렇게 푸는 것이 복잡하니까
2020학년도 수능 나형 20번이 나온 이후에 사후적으로
'아하 f(x)가 x=a에서 연속이지만 미분가능하지 않을 때, 다항함수 g(x)에 대해서 f(x)g(x)가 x=a에서 연속이려면 g(a)=0이어야 하는구나!'
라고 중간과정 설명없이 암기식으로 가버리면 추후 다른 식으로 포장해서 나올 때, 대처할 수 있는 능력이 없어져버려요.
ㄷ 선지는 ㄴ을 잘 풀었다면 간단합니다. f(x)^2은 다음과 같이 생겼습니다.
x=0에서 제1종 점프 불연속점이고, x=2에서 연속이지만 미분가능하지 않네요.
p(x)가 x=0에서 미분가능하려면, x^2을 인수로 가져야 하는 것이 맞습니다.
만약 p(x)가 x인수를 오직 하나만 가진다면, 즉
이라면, 미분계수의 정의 그 자체에 의해
의 극한값이 존재해야 미분가능입니다. 하지만, g(0)은 0이 아닌데, f(x)^2의 좌극한과 우극한이 다르므로 극한이 존재하지 않죠.
따라서, p(x)는 x^2인수로 갖는 것이 맞는데, (x-2)는 하나만 가져도 됩니다. ㄴ선지에서 봤던 논리 그대로 쓰면 됩니다.
20번에서 얻어갈 수 있는 Take away는 다음과 같습니다.
다항함수 p(x)에 대하여
1) f(x)가 x=a에서 제1종 점프불연속이라면->
p(x)f(x)가 x=a에서 연속이려면: p(x)는 x-a 인수로 가짐
p(x)f(x)가 x=a에서 미분가능하려면: p(x)는 (x-a)^2을 인수로 가짐
2) f(x)가 x=a에서 연속이지만, 미분가능하지 않을 때->
p(x)f(x)가 x=a에서 미분가능하려면: p(x)는 x-a인수로 가짐
제가 1)과 2)로 분리했지만, 사실 서로 매우 관련 깊은 내용입니다. 결국 (x-a)인수 하나씩 차이가 나죠?
왜냐하면, x=a에서 제1종 불연속점인 함수에 (x-a)를 곱하면, x=a에서 연속이지만 미분가능하지 않은 함수가 되기 때문이죠.
예를 들어,
라 할 때, x-2를 곱하면
입니다. 그림으로 나타내면
이죠.
한 마디로, x=a에서 제 1종 점프 불연속을 갖는 함수에 x-a를 곱하면, x=a에서 연속이지만 미분가능하지 않은 함수가 됩니다.
그래서, 1)에서 (x-a)인수가 하나 더 필요한 것이죠.
6. 2024학년도 수능 대비 지인선 N제 9회 14번
이 문제를 가져온 이유는, 제가 소개한 여러 불연속점 중에 다루지 않았던 불연속점을 포함하고 있기 때문입니다.
바로, 제1종 제거가능 불연속점이죠.
왜 제거가능인지 그림으로 설명해드리면,
이 함수에서, x=0에서의 함숫값만 동떨어져서, 불연속이 된 것인데
만약 함숫값 f(0) 만 잘 조정해서, f(0)=2를 만들어준다면 바로 연속함수가 되죠.
이렇게, 함숫값만 조정해줘도 연속을 만들어줄 수 있어서, 제1종 제거가능 불연속점이라고 부릅니다.
다시, 지인선 N제 9회 14번 문제를 보면
두 점에서 불연속이려면 f(x)=p(x-1)^2(x-3)이 되어야 합니다. 그에 따른 g(x)의 개형은 다음과 같죠.
(ㄱ은 그래서 참입니다.)
ㄴ은 결국, g(x)자체를 잘 옮겨서, g(x)g(x-p)가 x=3에서 미분가능하도록 할 수 있냐는 것입니다.
미분가능하면 적어도 연속이어야 하므로, p=0또는 p=2가 되어 불연속 곱하기 불연속이 연속이 되는 경우가 있는지
(이것도 중요함)
그리고 p=3이어서 g(x-p)가 x=3 근처에서 함숫값이 0인 연속함수가 되는 경우를 따져야 하죠.
p=0이나 p=2가 되어, 불연속점이 일치하는 경우에도 g(x)g(x-p)는 미분불가능하고(직접 확인해보시는게 좋은 연습이 될 겁니다.)
p=3이어서 연속을 만들어줘도, g(x)가 x=3에서는 제1종 점프 불연속점이어서 x-3 인수 하나만으로는 부족합니다.
따라서, ㄴ은 참입니다.
ㄷ은 주의해야 합니다. 왜냐하면, x=1은 제 1종 제거가능 불연속점이기 때문이죠.
예를 들어, 다음과 같은 제 1종 불연속점을 갖는 함수가 있다 해봅시다.
이 함수에 (x-2)를 곱해봅시다.
이 함수를 그리면
그냥 x(x-2)라는 이차함수, 즉 미분가능한 함수가 됩니다.
제 1종 제거가능 불연속점의 특별한 점입니다.
얘는 인수를 하나만 곱해줘도 연속인 동시에 미분가능이 됩니다.
따라서, ㄷ에서 p=1이라면, g(x)g(x-p)는 x=1에서 미분가능하게 됩니다. 따라서 ㄷ은 거짓이죠.
여기서 얻을 수 있는 Take away는 다음과 같습니다.
3) x=a에서 제1종 제거가능 불연속점을 갖는 함수 f(x)의 경우->
(x-a)를 인수로 갖는 다항함수를 곱하면 연속인 동시에 미분가능한 함수가 된다.
이쯤에서 다시 이 문제로 돌아가 봅시다.
우선 g(x)는 x=4에서 제 2종 발산형 불연속점을 갖습니다.
여기에 (x-4)를 하나 곱하면
더 간단히 나타내면
입니다. 즉, 제 2종 발산형 불연속점에 x-4를 곱하니, 제 1종 제거가능 불연속점이 되었습니다.
따라서 이 경우에는 (x-4)^2만을 가져도 되는 것입니다.
앞서봤던 예시인
의 경우에는, x인수를 하나 곱하면 (g(x)=x)
이므로, 제1종 점프 불연속점이 된 것이랑 차이가 있죠.
따라서 이때에는 세제곱 인수가 필요했던 것이었죠.
이 칼럼에서 여러분이 얻어가시면 좋을 내용을 2줄 요약하면
1) 불연속점의 분류에 따른, 곱함수의 연속성(미분가능성)을 위한 인수의 개수
2) 연속함수의 미분가능성을 따지기 위한 '미분계수의 정의'를 이용한 논리
입니다.
감사합니다.
0 XDK (+11,010)
-
10,000
-
10
-
1,000
-
이거 어떻게 쌓고 어디다 써먹을 수 있나용
-
이번에 더 좋은 대학에 가기 위한 도약일뿐 한양대 논술 기억하고 있겠다
-
붙여주세요 ㅜㅜ
-
수능 한 번 봤다고는 안했다 20,21은 수능 성적표를 못찾겠네
-
-1등급, 받아들일 수 없는 2등급은 풀 필요 없음. -3등급 확보, 2등급 겨냥...
-
있으면 좀 해보고싶네
-
수학만잘봤으면 0
에휴 작년보다 훨씬 잘볼줄 알았지만 작년보다 훨씬 쳐망했네 수학만 잘봤으면 성대는 됐을텐데
-
국어를 잘하기 위해선 '뇌'를 키워야 합니다. 국어 실력과 독해 실력을 향상시키기...
-
앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙...
-
난 과탐을 해봤어요!!
-
2점인가 3점인가 몰?루
-
메가 환급 조건 0
모의,수능 다 입력했었고 모의지원도 다 했는데요 합격한 학교의 합격증만 가지고...
-
실권이있는건아니라도 옯당도 만들고 걍 지역구 옯회의원하나씩 뽑고 지역별로 당협위원장도 있고
-
시대컨 플로우 숏컷 전 숏컷 난도가 개애애애높아서 플로우를 더 좋아하긴함 둘 다...
-
나같은사람있음? 11
+1결과 국어수학 다 떨어짐 ㅁㅌㅊ?
-
점공 6명 남았는데 4등이 508이네요 추합 생각하면 504로 써볼만도 했나 싶어서 아쉽..
-
에휴다노...
-
??
-
메가 숭배하라 5
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ진짜 찬양함 대 메 가 아니...
-
이런거 풀려면 입체도형 특징 다 외우고 있어야해요? 수능특강엔 입체도형 종류도 안알려주던데 ㅜ
-
22도 멸종위기종인데 19는 없어야만함...
-
내일들어오겠지만 ㅈㄴ빡치네..ㅠㅠ
-
샴푸와 바디워시로 인한 환경오염이 줄어듦
-
덕코좀주세요 0
저 닉변하고싶음..
-
ㅇㅇ
-
올해느꼈다
-
화학을 해본적이 없어서.. 화1 화2에서 원자구조, 금속의 반응성, 전기과학 이...
-
전 -20°C (강원도에서 스키 탈 때) 43°C (미국 데스밸리)
-
몇점이 나오든 3년 내내 고려대 갈거라고 떠들고 다녔었는데 쩝
-
나 제주의 보내면 반수하러 26 때 또 온다?♡
-
점공 안 하는 사람들은 어떤 부류인가요? 성격말고 성적이나 입시적으로요!! 혹은...
-
진학사 점공으로 들어오십시오!!!!
-
뭐지??
-
그때나 지금이나 현실은
-
호소인이었는데 다들 까리하노..
-
수능 끝나고 진로에 대해서 나름..?고민해보는게 좋았음 5
현직에 있으신 분들함테 많이 얘기 듣고 커뮤에서는 어케 생각하나 물어보고 적어도...
-
애니 계속 보다보니까 알게된건데 나 갸루파였음
-
수1 자작문제 1
-
왜 중고딩 때 온라인 게임 가급적이면 못하게 했는지 1
나이 먹고 신문이랑 뉴스 보면서 느끼는 거지만 인터넷 상에서 벌어지는 게...
-
재수땐 지방수호소인
-
얼마나 추운거죠
-
등 운동은 주당 20~25세트 이내가 최대에요 이거 넘어가면 오히려 덜 성장함 세트...
-
반수할 때 원준이햄 뽄 맞아서 리트 300제를 풀었는데 한 지문에 딸린 3-4개...
-
10명선발 34명지원 점공 18명들어옴 일단 나까지는 절대 안오는거 암
-
합격 수기 1
-합격수기 0️⃣ 24년도 25년도 논술카드 -24년도 건국대 수의학과 (최저떨)...
-
제때 자서 패턴돌려놨는데 낮잠을 또 겁나 자서 밤에 못잘듯
-
이거되나요? 1
인가경라인인데 이정도면 점공률도 어느정도찬거같은데 될까요?ㅠㅠ
-
등수 떨어지는거랑 유입인원 비가 1대1이냐...
진짜 감사합니다 !!
이번 칼럼 내용 알차니까 꼭 읽어주세요!! 감사해요!!
저 내용이 2017학년도 10월 학평 나형 30번에 그대로 나와 있었습니다
어떻게 보면 저기 나온 사후적인 풀이로 그냥 암기식 접근을 한 건지는 모르겠지만..
아직까지 기억에 남네요 ㅋㅋㅋㅋ
칼럼 잘 읽었습니다!
조력자 이론을 벅벅
그게 머에요?
현T의 소화기 던지기 같은 거용
소화기 던지기도 몰라요 ㅠ
지인선님 칼럼이랑 자료 항상 감사하게 생각하고 있습니다!!! 이번 N제도 얼른 풀어볼게용
고마워요 ㅎㅎ
저도 사랑해요
조력자이론 하나면 끝
조력자 이론이네요