M oㅇmin [1211935] · MS 2023 (수정됨) · 쪽지

2023-02-26 20:37:23
조회수 13,867

칼럼7) 등차수열 합은 이차함수다

게시글 주소: https://market.orbi.kr/00062226391

우선 기출 문제를 하나 보겠습니다.










(더 내리면 스포)




답은 4번입니다. 

제가 전에 썼던 칼럼에서 등차수열 관련 학습할 내용을 다음과 같이 분류해놓은 적이 있는데요, 이 글은 세 번째

3. Sn 자체의 성질에 대한 칼럼입니다.

등차수열의 합은 결국 이차함수이기 때문에, 이차함수의 여러가지 성질을 이용해서 풀이를 해갈 수 있습니다.




<풀이>

지금 제가 알려드리는 방법은 일반적으로 알려진 풀이와 큰 흐름은 같으나, 디테일에서 차이가 납니다. 더 빠르게 답을 내실 수 있을거에요. 


우선 Sn을 그려봐야겠죠. 


공차가 음수이기 때문에 위로 볼록한 함수를 그리면 되고, 또 (0,0)을 지나게끔 그려주었습니다. Sn의 필수조건이죠. 그리고 b는 14 이상의 자연수여야 한다는 것도 보이네요. 


그 뒤 문제에 주어진 이 조건을 해석해야겠죠. n이 자연수일 때 늘 Sn 함숫값의 절댓값이 14보다 크려면 어떻게 되어야 할까요.

이차함수가 0을 지나는, 표시한 저 부분을 관찰해야겠다는 생각이 자연스레 들어야 합니다. 0을 지나는 곳과 왼쪽, 오른쪽으로 가장 가까이 있는 각 점이 함숫값의 크기가 14 이상이어야 합니다. 이 조건만 만족하면 이차함수 특성상 그 외에는 문제될 부분이 없습니다. 계속 절댓값이 증가할테니까요.


오른쪽 근을 정확히 구해야 할 필요성이 느껴집니다. Sn 식을 직접 써서 근을 b로 표현할 수도 있지만, 그건 좀 재미 없으니 다른 방식으로 가볼게요. 


우선 an 식을 써보겠습니다. 

 이 등차수열은 일 때 0을 지납니다. 그럼 이차함수 Sn은 에서 최댓값을 가집니다. 

(이유 모르겠으면 옆에 링크 게시물 확인! 위에 링크랑 같은 링크입니다. https://orbi.kr/00061847052 )


한편 Sn은 n=0일 때 근을 가지므로, 대칭성에 의해 나머지 한 근은 

입니다. 이걸 보며 한 가지 정보를 더 끌어내야 합니다. 바로 b가 홀수라는 점입니다.

b가 짝수라면 나머지 한 근은 자연수가 될텐데요, 그런 일이 일어나서는 안 되겠죠. 함숫값 크기가 14이상이어야 한다는 조건을 만족하지 못할테니까요.


b가 홀수라는 걸 통해 또 다른 정보를 얻을 수 있습니다. 

근과 양쪽으로 가장 가까운 점을 다음과 같이 표현할 수 있습니다. 한편 표시한 빨간 부분 길이는 1/2로 같습니다. 


표시한 부분 길이가 같다는 정보를 통해 또 또 다른 정보를 얻을 수 있습니다.
바로 점 A와 점 B의 함숫값을 둘 다 조사해야 할 필요가 없다는 점입니다. 이차함수 특성상 축을 지난 이후로 점점 함숫값 변화폭이 커지는데요, 점 A부터 이차함수의 근까지의 변화량이 14보다 크다면, 이차함수의 근부터 점 B까지의 변화량은 당연히 14보다 클 것입니다. 후자가 항상 더 큰 값을 가져야 하기 때문이죠.


참고로 교육청에서 공개한 답지는 A, B 함숫값을 모두 조사했습니다. (자기들은 그렇게 안 풀어놓고 답지만 그렇게 써뒀을 확률이 큽니다. 답지를 작성할 때에는 작성자가 답지 쓰기 편한 방식으로 쓰는게 아니라, 공부하는 학생들을 위해 제대로 답지를 써야한다고 생각하는데... 교육청 답지를 보며 아쉬움을 느낄 떄가 많습니다. 이 문제도 그 중 하나네요.)  


아까 an식을 써뒀으니 무민공식을 이용하여 Sn 식을 바로 써봅시다. 

(무민공식 모른다면 옆에 링크 확인 https://orbi.kr/00061847052 )

점 A의 x좌표를 대입합니다. 그 결과가 14 이상이라고 부등식을 세워준 뒤에 풀면

이 나옵니다. 

답은 4번입니다.



Sn 을 "이차함수답게" 해석해야 한다는게 구체적으로 어떤 느낌인지를 잘 보여준 문제라 생각합니다. 

수열은 자유도가 상당히 높은 파트인데요, an 을 관찰하며 답을 낼 때도 있고, Sn을  관찰하며 답을 낼 때도 있고, 둘이 같이 보며 전개해가야 할 때도 있죠. 세 방식이 모두 어색하지 않아야 처음 보는 문항을 만났을 때 제대로 접근할 수 있을겁니다.





또 다른 기출문제를 볼게요.

얘도 조건에 따라 Sn을 완성하다보면 Sm=-162, S_2m= 162로 확정짓고 계산하면 끝이란 걸 알 수 있어요. an으로 돌아가지 않고 Sn의 이차함수적 성질에 따라 끝낼 수 있는겁니다.


 


도움이 되셨다면 좋아요 부탁드리고, 팔로우 해두시면 앞으로 올라오는 칼럼들과 자작문제를 놓치지 않고 확인하실 수 있습니다.


감사합니다!   

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.