2022학년도 고3 10월 미적분 30번 해설
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어릴때 재미있게 봤는데
-
성공시:메디컬+설공 휙득 실패시:사탐가산에 교차도 힘들어짐
-
이번 수능 현역 미적 백분위 77로 3등급인데 도형 부분이나 가끔 4점 풀면 까먹은...
-
표정 진짜 킹받네요
-
이성이랑 10
어케만나는거임ㅇ
-
철학 ㄱㄴ하나요 ??
-
내일부터 공부함 0
국수만 조금씩
-
시대인재 수학 미적분 현강을 들으려고하는데 강기원,김성호,송준혁,엄소연쌤의 각각...
-
진짜
-
국어 수학 애매하게 보고 탐구만 잘 봐서 불보정이면 좋겠는데....
-
사실 가르쳐주던 과외생도 없고 여친도 없는데 방구석에 쳐 박힌 채로 아무 것도 안...
-
사탐으로 메디컬 된다고 생각함? +8점이면 차이 큰거 아닌가..
-
왤케 4
우흥거리는 사람이 많음
-
가서 책읽고 영어 공부나 하려는데
-
69모 쉽고 수능 어려움
-
여성의 학습권이 침해당할 위기에서 여성 인권 신장을 위해 노력하시는 동덕여대...
-
투투끼얏호우 1
해보고 싶은데 지금까지 해온 생지가 너무 아까움..
-
6974모의고사 그리고 11월 수능
-
라끼얏호우 0
사실 신나지는 않아요
-
고2 영어 2~3 진동하는데 하루 한 시간 적당하죠? 4
감 유지용으로 일주일에 한번씩 듣기 듣고 독해는 한 시간만 하고 있어요 2~3이긴...
-
이 재밌는걸 자기들끼리만 하고 있었다니
-
사귄지는 꽤 됐고 한 쪽은 재수, 한 쪽은 고3인 1살차이 커플이면 헤어지는 게 맞음?
-
헤어지고 싶으면 모니터 끄면 되는거라 이별이 너무 가볍게 느껴지더라 어떡하지
-
그냥 재미로 해보는거니 본인 생각 적고 가주세용
-
출처 : 크럭스 n2211 이번에도 이거랑 비슷하게 가지 않을까요? 본인이 42라 희망사항임
-
제발..
-
카나라즈
-
빌었어 3
여친 생기게 해달라고 빌었어
-
수특 레벨 2,3 사설 실전모고 10회 22~25 모의논술,기출문제 정도면 합격하는데 충분할까요
-
수학이 너무 낮아 고민이네요. 과는 상관없습니다
-
치킨시킬까 5
닭튀김이 먹고싶구나
-
마더텅 풀면서 도표 문제 풀면 웬만해선 다 맞긴 하는데 시간이 좀 오래 걸린다는...
-
아 0
좀 돌아버릴거 같다
-
얼마가 적당할까? 부르는게 값인가..
-
군대 사람들이 알려준 포켓몬 고로 해외 여행하는 방법 2
GPS조작 앱 깔아서 그걸로 셰계여행 느낄수있다고 군대는 활동이 제한 되니끼
-
우리나라가 다른 선진국에 비해서 과학기술, 특히 기초과학 관련해서 투자가 빈약한...
-
경북의 논술 0
답은 다 맞아야 붙나요? 혹시 작년에 붙엇다는분 보신분 계신가요? 의대 논술 경북대...
-
탐구 과목 고민 0
예비 고3입니다. 이제 슬슬 정시를 준비하려고 하는데 탐구 과목을 무엇응 해야할지...
-
수능화학은 절대 쳐다보지도 않을거임 걍 9박고 싶은데 논술에서 내신반영한다니까 완자만 풀고 ㄱㄷ
-
몇 시간을 자도 뭘 해도 아무것도 안 돠고 피곤하기만..
-
현역(언매 기하 생1 지1) 62444 재수(언매 기하 생1 지1) 52352...
-
3뜨면 30살되도 생각날듯 ㅋㅋㅋㅋ
-
키 160 중반에 BMI로 따지면 표준체중임 근데 기초체력 좀 딸리는 편이고 운동...
-
보통 일반고에서 설대 수시 지균 2명 다 최저 맞추나요? 3
궁금합니다..
-
숙명여대 수학 50프로보는 학과 가능할것 같나요?? 스나로 수학40보는 건국 ㄱㅊ을까요??
-
일반 본인은 23수능에서 백분위 99(미적분 원점수 92(14,22틀))를 받음....
-
문과 누백 15퍼센트 하려면 평균백분위는 몇정도 인가요??
-
수,영은 4등급각오했는데 국탐 조질지는 꿈에도 몰랐음.. 국탐으로 대학갈려했는데...
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)