수학2 교과서 개념 정리, 수능 개념 정리 및 증명
수학2 (함수의 극한, 함수의 연속, 미분계수와 도함수, 접선의 방정식) 관련 내신 개념 정리.pdf
자료 만들다가 공유해두기 괜찮을 것 같아 남깁니다.
<교과서 개념>
1. 함수의 극한
2. 함수의 연속
3. 미분계수
4. 도함수
5. 도함수의 활용 1 (접선의 방정식)
<수능 개념 + alpha>
1. 구간 별 함수의 미분가능성
2. 곱함수의 미분가능성
3. 절댓값 함수의 미분가능성
4. 기함수, 우함수
5. 0/0꼴 극한에서의 미분계수의 정의 활용 (수능 수학 수준에서 로피탈의 정리 대체 가능)
6. 곱함수의 연속성
7. 미정계수의 결정 ((분모)->0일 때 (분자)->0)
8. 미정계수의 결정 2 ((분자)->0일 때 수렴값 0 아니면 (분모)->0)
9. 편미분
10. 대칭성
11. 구간 별 함수의 연속성
+교과서 개념, 수능 개념은 한완수에서 인용한 표현이지만 실제로 <수능 개념 + alpha>에 미정계수의 결정 같은 것들은 교과서 개념으로 분류되었던 것으로 기억합니다. 성질과 관련된 것들을 전자, 그로부터 유도할 수 있는 것들 등을 후자로 확인해주시면 감사하겠습니다!
0 XDK (+1,000)
-
1,000
-
얼버기 6
나갔다와서 8시에 눈감고잤는데 솔직히 3시는 됐을줄알았는데 12시네 ㅋㅋㅋㅋ
-
그거 하나면 된 걸까... 큰 성과를 이루지는 못했지만 한 10년 뒤의 내가 올해를...
-
앙??
-
첫눈에 반했었죠,,#
-
학종 경재학과 가려는데 공대보다 경제학과가 컷이 높은 경우도 많던데 왜 그런가요...
-
중2병 억제를 굉장히 잘햇다는거에요 덕분에 흑역사 같은게 거의 남아있지 않아요
-
둘 다 붙으면 어디감
-
과외 궁금점 0
올해 수능 본 현역입니다 제가 정시로 대학을 갈 예정이라 2월에 대학 합격증이...
-
돈 벌 수 있는 것도 아니고 여자 꼬시는 데 좀 유용한 거 말고 외모가 사용가치가...
-
몇번째로?
-
또 연애떡밥이야 0
락스 다 먹었는데 에휴 사와야겟다
-
7칸 부턴 발뻗잠인 것 같은데 6칸은 떨어질 가능성이 더 높을까요ㅜ
-
빡치네
-
받아들여줘 그냥...
-
전글과이어집니다
-
그러니 좋은대학가세얌 ㅇㅇ
-
내가봄
-
7월 7일 생윤 시작 개념 1회독 쭉 듣다가 앞부분 기억 안 나서 롤백 한 단원...
-
뭐가 됐든 0
착하고 열심히 사는 사람들이 행복한 세상이 됐으면 좋겠다 물론 나는 해당하지 않음
-
진심인 거냐
-
세단 광명상가 라인이라 진학사가 많이 정확하긴 어려울 것 같긴 한데 반영비 딱...
-
질문좀) 님들아 군대에서 하루에 3시간씩 공부하다가 0
주말에는 6~7시간 정도 해서 3~4등급 정도가 나왔는데 이게 썡으로 재종이나...
-
군수 성공함 언미물지 21111 군수 성공보다 전역이 훨씬 기쁘네요 ㅋㅋ 아무거나 질문 ㄱㄱ
-
앞으로도 요로시쿠 오네가이시마스! (애니 보다보니 아는 일본어가 생기네요..)
-
어어그래
-
오리비 이야기 8
-
각각 11명,. 5명 뽑는데 그냥 하나는 대형쓸까요 다는 정말 넣고싶은 곳이 없어서 고민이네요
-
내 서글픈 첫사랑 썰 13
.
-
18틀렸을듯 CD만붙잡고 와리가리하다가 뭐지시발 내뱉었는데 BC BD비교해서 도출하는거라니..
-
저는 문과고 상경계나 통계 지망입니다… 중대 부동산이 경제학사가 나온다고 들어서 쓸...
-
국어능력 날라간 절망감이란.. 진짜 인생 험난해짐 국어 높1에 수학 2컷높3...
-
육사 학종 2
내년에 육사에 학생부 종합전형 같은게 생긴다는데 내신 몇등급정도면 들어갈까요?
-
물2 실습 2
토크 공부하러 나옴
-
숭실대 글미 여기 취업 잘될까요..? it대이긴 한데 좀 애매해 보이고 궁금해요 컴...
-
김과외에 재능기부로 무료과외 가능하나여?
-
아직 없다...
-
멋있는데?
-
홧팅하자 나 자신
-
여러분들은 이번 화1 6평 9평 수능 중에 뭐가 제일 난이도가 높았던 것 같나요??
-
벼락치기하면서 먹을 거 추천좀
-
딱히 미래에 대한 구체적인 계획은 없고 나중에 정 취업 안되면 최후의 수단으로...
-
[가] 숭실대 경영 or 경제 [다] 아주대 금공 or 경영 수학반영비 높은 숭•아...
-
합격증 보낼 때 수험번호 가리면 안 되나요? 이거 안 가리면 등록 취소 등 개짓거리가 가능해져서..
-
행복해지기 1일차 12
-
예비 고3정시 0
지금 예비 고3인 상황이고 학교에서는 이과였고 화생지로 저번 성적까지 총 합하면...
-
https://m.sports.naver.com/wfootball/article/07...
-
지금까지 한번도 맞아본적이없어
-
확통 3점에 폭탄 <- 이건 필수같음 할만한 공통 은근 높은 미적 정답률 2307...
사랑해요
참고로 9. 편미분 같은 경우 한국에선 대학 미적분학에서 처음 배우는 것으로 알고 있지만, '도함수의 정의'를 활용하는 수2 유형 중 'f(x+y)=f(x)+f(y)+ax^2y+axy^2-bxy+2'과 같은 항등식을 제시해줬을 때 편미분을 활용하면 도함수의 정의를 활용할 때보다 조금 더 빨리 문제를 해결할 수 있어 넣었습니다. 다만 파일에 있는 부분은 도함수의 정의처럼 편도함수의 정의를 써둔 것이고 실제 연산은 밑 영상 참고하시면 좋을 것 같습니다!
https://youtu.be/NKazLqcU-Fk
논술과 수능을 모두잡는 ㄷㄷ
증명은 한 번쯤 직접 해보시면 학습에 도움이 될 것 같고 결과적으로 수능을 보기 직전에는 자료에 있는 개념들을 활용할 때 '머릿속으로 증명을 훅 훑고 지나간다는 느낌으로' 조건을 잘 확인하고 활용해 문제 풀이 시간을 단축하시면 좋을 것 같습니다. 이를테면 '구간 별 함수의 미분가능성'을 사용할 때 구간 별 함수가 미분가능한지 확인하고, 가능하다면 미분계수의 정의를 쓰는 대신 함숫값이 같음과 미분계수값이 같음을 바로 이용하는 거죠! (그나저나 기본적인 것을 옮겨둔 거라 몇 고2 분들께 도움이 되었으면 했는데 생각보다 많은 분들이 감사를 표해주셔서 신기하네요 ㅋㅋㅋㅋ 잘 활용해주셔서 저도 정말 감사드립니다! 다들 '스킬'에만 의존하지 말고 왜 그런지 '증명'에도 초점을 두셨으면 좋겠습니다)
와 대박이네요... 근데 선생님 혹시 실전에서 로피탈의 정리 사용해보신 적 있으신가요? 아니면 하나의 극한식을 바라보는 색다른 발상 정도로 여기시나요?
고2 올라가며 처음 수2 배울 땐 썼었는데 고3 되고 수능 수학에 대한 이해도를 키워가는 동안은 로피탈의 정리를 사용하기 전에 확인해야할 조건이 까다롭다 느껴서 자료에 있는 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 극한을 처리했던 것 같습니다. 수2 수준에서 로피탈의 정리랑 연산량은 같은데 확인해야할 조건이 조금 더 직관적이고 교육과정 내라는 점에서 마음이 놓였습니다. (개인적인 생각으로 수2는 '미정계수의 결정'과 '미분계수의 정의'에 익숙한 상태를 만든 후 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 맞이하는 극한들을 처리하는 게 이상적이라 느끼고 미적분은 '0/0꼴 극한에서의 미분계수의 정의 활용'을 사용할 수 없는 분모에 있는 함수의 미분계수가 0인 경우 (lim x->0 [tan(x)-sin(x)]/x^3 같은 거) 등에는 인수분해나 유리화 등을 통해 해결하는 것이 이상적이라 느낍니다. 물론 이 예시의 경우 '테일러 전개'를 활용해 다항함수의 극한 꼴로 해결할 수도 있지만 ㅋㅋㅋㅋ 그건 로피탈의 정리보다 더 한 교육과정 밖 내용이니까요! 근데 말하다보니 대표 함수들의 테일러 전개식을 활용한 함수의 극한 처리에 관한 자료를 만들어보는 것도 재밌을 것 같네요, 미적분에서 삼각함수의 극한 처리할 때 1-cos(x)를 x^2/2로 생각하는 것 같은 거도 사실 테일러 전개식에 기반해 설명하면 직관적으로 받아들일 수 있거든요)
경제학은 위대합니다 ㅎㅎ
선생님 감사합니다. 혹시 미적도 가능하신가요?
자료의 핵심이 '절댓값 함수의 미분가능성', '구간 별 함수의 미분가능성', '곱함수의 미분가능성' 등 직접적으로 교과서에서 소개하진 않는 개념들에 대한 소개와 증명이라고 생각하는데 이는 미적분에도 똑같이 적용되기 때문에 어떤 내용을 다루는 것이 좋을지 잘 떠오르지 않습니다.
자료의 앞부분처럼 간단히 어떤 내용을 다루는지 정리하고 (수열의 극한에 관한 성질, 급수, 초월함수의 그래프와 극한, 초월함수 미분법, 치환/부분적분법, 구분구적법, 2차원 운동 등) 제가 공부할 때 중시했던 점들을 적어두는 건 마찬가지로 자료의 시작을 열기에 좋을 것 같아요.
중후반 내용의 경우 지금으로서는 초월함수의 극한을 다룰 때 sin(x), tan(x), e^x 같은 것들을 테일러 전개로 전개한 식을 테일러 정리, 테일러 급수에 기반해 소개하는 것, (다항함수)*(초월함수) 같은 식 꼴의 그래프를 미분없이 그리는 법 (대표적인 유형 기억), 치환적분법과 부분적분법 같은 것을 연습하기 위한 [sec(x)]^3 따위의 적분 정도가 떠오르는데 혹시 제가 다루었으면 하는 내용이 있을까요?
+첨언하자면 본글의 자료 뒷부분은 한완수 수1/수2 상중하에 기반해 서술했는데 미적분의 경우 제가 아직 하는 공부하지 않은 상태이고 상도 여러번 공부하진 못한 상태라 이번 자료만큼의 퀄리티 혹은 의미는 지니지 못할 것 같기도 합니다 ㅜ 비슷한 느낌으로 미적분도 제작해 올릴 수는 있겠으나 이번 자료만큼 깔끔하게 정리하기에는 제 내공이 부족할 것 같네요
초월함수를 제가 매끄럽게 다루지 못한다..? 라고 해야하나 그런 느낌이 있어서 한 번 질문을 해 보았습니다. 지금 올려주신 자료만으로도 충분히 감사합니다.
초월함수의 그래프를 매끄럽게 다루는 것과 관련해서는 이 영상을 참고하시면 좋을 것 같습니다.
https://youtu.be/xp7OG3xnC4w
감사합니다
수1이나 다른과목도 해주실수 있나요?
개인적으로 실전 개념과 그에 대한 증명을 공부하는 것이 학습에 큰 도움이 되는 경우가 수2와 미적이라 느끼긴 합니다만 고려해보겠습니다.