삼도극 근사의 남용에 대한 짧은 이야기
* 기하적 근사에 관한 이야기입니다. 최종처리 근사는 당연히 약간은 해야합니다. *
특정 상황에서 사인 x -> x
특정 상황에서 cos x -> 1은 완전 기본원리고
원과 삼각형의 관계에서 특정 상황에서는 호를 변의 길이로 근사 가능
특정 상황에서 어떤 변의 기울기를, 예상되는 미분계수로 근사하기 가능
특정 상황에서는 삼각형의 두 변을 평행선으로 변경 가능
뭐 진짜 조금만 따져보면 이런것들이 있겠죠.
근데 전부 "특정 상황에서"라는 전제가 붙습니다.
근사가 완벽히 성립하는 전제조건을 알고 있지 않으면, 상황이 조금만 틀어져서 전제가 깨진 상황일때 잘못 사용하면 나락갑니다.
저는 약간의 근사는 썼는데... 나중 가서는 진짜 확실한 sin, cos말고는 결국 안썼어요. 제가 생각한 전제조건에 대해, 꼭 반례가 있더라고요?
뭐 저는 19수능 시절 수험생이고 거의 아무도 근사를 안가르쳐서 그럴수도 있겠죠(오해방지용 : 요즘 나오는 삼도극 기출들 보고 있습니다)
하지만 혹시 모든 문제가, 기하적 근사로 풀린다고 생각하신다면, 가슴에 손을 얹고 생각해보세요. 그러면 근사를 깨달으신 순간부터 푼 모든 삼도극을 다 맞으셨어야 합니다. 뭐 삼각형 넓이 구할때 0.5빼먹는 실수 정도는 ㅇㅈ. 근데 그러신가요? 가끔씩 어떤 문제들에서 반례가 나오고, 이론이 확장되지 않나요? 아 내가 전제를 까먹었네~라고 착각할수도 있고요. 그런 태도를 보고 끼워맞추기, 뭐 전문용어로 Ad Hoc이라 합니다.
그니깐 너무 당연한 일부 상황에서만 근사를 쓰라고 하는겁니다. 이 너무 당연한 상황들도 전제가 생각보다 복잡한데, 더 복잡한 상황에서는...? 수험생 수준에서 될까요?
사실 뭐 대부분의 수험생은 적당히만 근사를 쓸 거라 생각합니다. 요즘 삼도극 많이 어렵더라고요. 빨리 풀려면, 적정선에서 써서 나쁠건 없겠죠.
다만 거의 모든걸 근사로 해결하시다가, 수능날 반례가 나온다면, 아무도 4점을 돌려주지 않습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
군복무중이라 인강 들을 시간이 적은 상황. 전역은 내년 4월이고 노베이스 이번년도는...
-
라인좀요.. 3
건대가고싶어요...
-
한완수로 개념 떼우고 어삼쉬사, 4규 시즌1, N기출 4점 집중(4점짜리만 있는...
-
군수생)) 9모 확통사탐 이정도면 어디까지 가능할까요..? 3
전역까지 100일 안남은 육군 병장인데.. 공부랑 훈련만 하는데도 시간이 빠듯해서...
-
아님 그냥 게으른 거였음 몇년전에 하고 싶었던 일에 무지성으로 헤딩하던 시기가...
-
좋아요 92개, 댓글 43개로 제가 어제 올린 글이 메인을 갔고 저는 약속대로...
-
이전글) 무지성 군수로 인서울 한 후기 ->...
-
22학년도 수능이 끝나고 남학생분들의 경우 군수의 길을 걷고 싶어하는 분들이 많은...
-
난 말이야 2
이 개고생에 손해배상까지 더해서 좀 많은걸 보상받아야겠어 난 오르비에 전자책써서...
-
질문이 여러 개가 있습니다 .. 1. 8월 (수능 접수) 11월(수능 응시)...
-
혹시 괜찮은거 있는거 아시나요? 없으면 백호 2021 개념서 구해서 공부하려고 합니다..!
-
폴라리스 vs 크로녹스 중에 생각중인데요 혹시 둘 중에 어떤게 괜찮을까요? 다른 것도 추천받아요!
-
한완수가 5권이죠? 이과생이면 5권 다 해야 하나요..? 확통 수학1 수2+미적상...
-
17현역수능 망 18재수 떡상 19삼수 저조 ->부산대 공대 20 군입대...
-
안녕하세요 지방에 있는 한 대학교 다니는 16학번입니다.. 군대를 와서 편입이나...
-
9월에 제대했고 이번 수능을 신청은 했습니다. 문과 17수능때 3 2 2 1 1...
-
이번에 수능을 보려고 하는데 군복무확인서 대신 입영통지서로 대체 할수있나요?...
-
군수생..좀 도와주세요 ! 도와주시는 분들 복받으실 꺼에요ㅠㅠㅠ 0
중앙대 공공인재 목표로 군대에서 정말 열심히 공부했는데 정말 아쉬운 성적이...
그냥 정석대로풀쟈
ㄹㅇ 가끔 악질 사설 중에 근사쓰면 틀리게 하는경우 있더라구요 ㅋㅋ
지금 매우 혼란스러운 상황인
sin tan 1-cos 곱해졌을 때만 세타로 바꿔쓰는..
전 불안해서 못 쓰겠더라고요,,
ㅇㅈ합니다 그래서 저는 뭔가 변수가 생길 여지가 있어보이면 그냥 정석풀이로 돌아갑니다
빡T랑 호T 수강하는데 둘다 안쓰셔서 자연스럽게 걍 정석으로만 뚫는중..
정말 적당...히 사용하는중
삼극사기 할려했는데 하지말까요
삼극사기 저격글 아닙니다. 원래 근사는 자기가 감당될 만큼만 하는거라서.
막줄추
각비율로 선분비 알아내는것 + 활꼴 날리기
+ 제일 기본근사
이거말고는 다 정석대로 가는거 같아요
근사 한번 막히면 어디서 막혔는지 계산이 구분안될때가 많아서ㅜㅜ
활꼴 날리기랑 기본근사는 시간없을땐 해보는게 좋은 것 같기도
근데 전 활꼴날리기도 약간 위험하다 생각은 해요.
각비율로 선분비 이건 사인법칙 때문에 당연한거라서,,
ㄹㅇ 자꾸 사후적으로 끼워맞추는 느낌나서
식 세우는 것까지는 정석대로 하고 계산에서만 쓰는 중 ㅋㅋ
그냥 요즘 삼도극이 쓸데없이 어려운게 만악의 근원인듯
'모든 과정 다 끝내고' '곱셈꼴로 묶인 경우'에서만 쓰면 절대 오류가 안생기는데..문제는 이렇게 하면 그냥 계산하는거랑 시간이 차이가 없더라고요
그쵸 , 이경우에만 써야되는건데
이건 근사가아니라 그냥 극한계산에 불과하죠.
그래서 정석으로푸나 큰차이가 없다는건데,
문제를 거시적으로 보고 이게 부정형 꼴로 안갈꺼같다는 확신이 있을때만 미리 근사쳐야죠.
근데 잘못치면 처음부터 형태남겨셔 다시풀어야되고요.
결국 정석으로푸는게 맘편합니다 사실 그렇게차이없구요
솔직히 요새 정석대로 풀면 계산양이 너무 많고 식 복잡해서 계산 실수 나서…. 근사 한번 맛보면 못 헤어나옴…
저는.. 근사를 배웠다기보단 문제풀이 하면서 깨우친 장수생인데 그 이후로 근사에서 시간 오래쓴적도 틀린적도 없어서 잘 쓰고 있어요.
너무 근사에대해 거부감 가지실필요도 없는듯요
근사써서 풀었는데 답 왜틀렸나요? ㅠㅠ 이런 질문 하는 사람들은 그냥 교과서 풀이로 정석대로 잘 푸셨으면 좋겠어
저는 명확하게 정리된 4개의 삼각형이 있고
이외의 경우, 혹은 뺄셈(1-cos,sec-1 제외)가 나오면 즉각 근사를 멈춥니다.
삼극사기 본 이후로 푼 문제는 단순 연산실수 말고 매커니즘의 오류로 틀려본 적은 없어요
뺄셈이 나오자마자 근사를 안 쓰는 수준이면 거의 안전하긴 합니다.
적당한 근사는 어차피 최종과정에서 할거 미리한다고 생각하면 편하긴함 ㅋㅋ