[칼럼] e와 π의 초월성
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10시까지만 일본어 공부 좀 하다가 오트밀이랑 닭가슴살 쳐먹어야징
-
일단 나는 수포자고 머리가 완전 문과 100임ㅠㅠ 세계사 할까도 고민했는데 수포자라...
-
밥먹고바로눕기 1
-
확통특 6
확통특: 쉽게 나오면 왜이렇게 쉽게나왔지하고 3번풀어서 시간 많이걸림 어렵게 나오면...
-
컷은 모르겠고... 그냥 지1이 1 뜨고 생2가 2 떴으면 좋겠네요 ㅠㅠ
-
인스타에서 프리랜서들이 장소 구분 / 시간 구분 없이 원할때 쉬고 원할때 일한다...
-
기출들은 다 빡셌는데 왜이렇게 쉬운것이냐 잘쓴거 같긴 한데 너무 쫄리는데
-
전문대 지방대 어디쯤 갈 수 있는지 알려줘
-
어케 놀지 5
뭘 해야 잘 놀 수 있을까
-
시대인재 현강 0
시대 현강 국수지구 기출도 다루나요?
-
심사숙고하는 성격이면 인생 사는 데 좋을 것 같지만 꼭 그렇지도 않더라구요...
-
육군에서 26수능을 볼 생각입니다. 지금 일병2호봉이고 병장 달때쯤 수능을...
-
이이잉 ㅜㅜ
-
병역 문제가 최악이구만 24
큰 목표를 세우고 싶은데 여기 발목이 잡혀서 끝없이 계획이 지연되는구나
-
아니었구나
-
상평시절 17이전말고 18부터 공부하는 게 맞죠?
-
난이도: 하~중 타임어택: 중 미적: 기본적인 개념에 충실 딱히 어려운건 없었음...
-
1컷 얼마임? 고인물들 고려해서
-
N수생이고, 올해 지방 의대는 가능한 성적을 맞았지만, 한 두개만 더 맞았으면 하는...
-
국어와 관련하여 질문을 받아보면 많은 학생들이 글을 ‘이해‘하는것이 무엇인지...
-
아침 6시에 깨는 이 갓생 뭐임?
-
평소에 공부할때 틀리면 100프로 실력이라고 생각하고 공부해야함 애초에 그런걸...
-
공기업vs약사 6
공기업 초봉 4000~5000만원 평균연봉 8000~1억원대 약사 서울권 약...
-
Yg는 진짜 아웃풋이 ㅋㅋㅋㅋㅋ 걸그룹은 블핑 보이그룹은 빅뱅 ㅋㅋㅋㅋㅋㅋ
-
그래도 ㄱㅊ은 편임? 일단 유리한 정황인거지?
-
에스컬레이터 있는 학교는 첨보네 ㄷㄷㄷ 310건물이 유독 좋은건가요..
-
오쿠리시마스
-
to 친애하는 오르비언님 - 이정도론 메디컬 힘든가요..? 8
아무래도 영어 3이 치명적으로 작용하겠죠..? 혹시나 대략적인 라인 알고계신다면...
-
문과 설대식 409.x 학부대학 가능하다고 보시나요 0
내신 bb ~ cc 기준 아 둘 중 뭐냐에 따라 여부가 달라지나
-
도착 3
휴 안 늦음
-
내년에 동사 한번 응시해 보려 하는데, 작년 n제도 사서 풀어봐야 할까요??
-
1타 관계없이 자신한테 잘 맞는 강사 들으면 되는거 알구있는데그래도 추천...
-
충주로 가요 10
건글의 면접을 보러 가요
-
미적 84인데 0
걍 2등급인거 받아들였음 나는
-
택시타고 가는데 빠듯하다
-
여그로 ㅈㅅ 국수영사문지구 93 84 81 47 36 1 2 2 1 3 서성한 경엉...
-
어제 하고 싶은 말 다하고 쳐자서 내 이미지가.. 내 착한 이미지 돌려내..
-
ㅈㄱㄴ
-
가천의 고사실 0
그냥 정해진거 없이 가라는대로 가면됨?
-
맞다면 우리 주변엔 공룡이 아닌 것이 없겠지.... 우린 공룡들 속에서 살고 있다
-
가천의 201호 4
ㅎㅎ
-
다 줘 패야겠어
-
얼부기 6
온앤온
-
그렇다고 30분 늦게 나왔으면 늦었겠지,,,
-
얼버기 4
깨면안되는데 깨버렸어요... 다시잠이안와...
-
왜깼지 2
-
누구 더 추천함?
-
걍 빈 자리가 없는데 최저가 어떻게 됐더라.....
-
연대 현재상황 11
그냥 노답 이제 ㄹㅇ 스카이라는 단어도 한물간듯함 의치한약수가 이 스카이서성한이라는...
-
학교 때매 늦는 거 봐주나요..? 시대 강대 둘 다 전화로 물어봤을 땐 안봐준다고...
7ㅐ추
고등학교에서는 왜 저런 조합 노테이션을 안 쓰는 걸까요?
5252 어디까지 적을 늘리려고 그래
수능공부하는사람이 이걸 정독하면 도움이될까요? 훑어봤는데 이해하려면 한 한시간은 써야될거같아서
수능과는 아무 관련 없습니다. 차라리 위상자 칼럼을 정독하세요.
평소에 초월수는 대표적인 문자로 나타나는 pi, e 정도가 전부라 생각했는데 아닌 것도 꽤 있더라구요. 그리고 e*pi와 e+pi 둘 중 하나는 무조건 초월수라는 얘기도 신기했구요.
초월성이 뭐임
그 어떤 유리계수(정계수) 다항방정식의 해도 될 수 없는 복소수입니다. e를 영점으로 가지는 정계수 다항식은 못 만든다는겁니다.
정계수 대수방정식…으
너무 반가운 증명인데요..!
옛날에 중학교 때 파이가 왜 무리수이고 초월수인지 여쭤보았을 때,
담임 선생님이 과학고에 재직중이셨던 선생님께 요청해서 저 테일러급수를 통한 오일러 공식 증명이랑 린데만-바이어슈트라우스 정리랑 해서
총 8쪽 정도 되는 A4용지에 인쇄해서 주셨었거든요.
당시에 미적분을 몰라서 (심지어 책이 영어였어요!!) 읽다가 결국 '그래서 e^pi_i가 -1이라는 대수적 수가 나오기 때문에 pi가 초월수가 아니면 모순이라는 거지?' 라고 결론짓고 끝냈었어요...
그런데 이렇게 숨어있는 강호의 고수분들한테 이런 내용을, 심지어 한글로, 배울 수 있다니...
참 ... 이런 말 하면 늙은이같지만 세상이 참 좋아졌고, 점점 더 좋아지는 것 같아요!
어려워요