a<b일 때 0<af(b)<bf(a)이면 f(x)는 위로 볼록?
(09년도 대비 9월 평가원 수리 가형 11번입니다. 문제에는 x,y로 조건이 써있는데, a,b로 수정했어요.)
요약
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
이때 f''(x)<=0임을 증명.
-----------------------------------------------------------------
조건
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
보기생략
일반적인 풀이
0<f(b)/b<f(a)/a이므로 '그려보면' 위로 볼록인 개형이 나온다. 따라서 위로 볼록으로 잘 그려서 삼각형 열심히 만들어서 풀면 됩니다.(보기나 뒤쪽 해설같은건 생략할게요. 논지에서 벗어나니)
물론 저렇게 풀면 답이 잘 나옵니다만, 수식으로만 유도해보고 싶은데 잘 안나오네요.
우선 a<b일 때 f(b)/b<f(a)/a이므로 (0,1)에서 f(x)/x는 감소함수입니다. 즉 (f(x)/x)'<=0이고, h(x)=xf'(x)-f(x)로 놓으면 h(x)<=0입니다.
f(0)=0에서 h(0)=0이므로 h(x)의 그래프는 원점을 지납니다.
이제 h(x)가 (0,1)에서 감소함수임을 보이면 h'(x)=xf''(x)<=0이 되고, x>0이므로 f''(x)<=0, 즉 위로 볼록임을 증명할 수 있습니다. 그런데 이게 진짜 잘 안나오네요. 식조작을 어찌하면 좋을까요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
의대증원 정시 0
현재 확률뜨는건 의대증원 고려해서 내려간 입결 기준으로 뜨는건가요??
-
목이 아프군아 0
목캔디가 필요해
-
미적vs기하 과탐vs사탐 뭐 추천??
-
자다가지금일어남 1
근데졸리니까다시자러감 수능끝났으니까죄책감없이자버리기
-
나를 허락해준 세상이란
-
아 진짜로 2
대학원 준비해볼까
-
집에 박혀있다 7
흐앗 너무커
-
1M 이상이면 음수 아니냐
-
가챠 타임은 언제나 도키도키! 그 결과는.....!! 카나!!! 사실 카나를 그리...
-
내오랜꿈
-
연고대 목표로 반수하려는데 미적에서 확통으로 바꾸는거 괜찮을까요 ㅠㅠ 공통 3틀에...
-
근데 돈 아껴야 해서 가기 싫음.. 결론: 돈 좀 주세요
-
반수 0
지방대 교과로 3.초반~중반 학과 미컴에서 명상가 인가경 사학이나 중어중문 반수는...
-
23수능이 마지막이었는데, 그때랑 많이 차이날까요?? 저는 고1때 유기하고 인강에서...
-
이런 게 히키코모리인 거죠? 생각보다 쉬운데
-
예뻤어밖에 몰랐는데 걍 다 좋네 대박
-
탐구 추천 좀 2
화1지1 했는데 화1 개같아서 버리고 지구깔고 나머지 하나 선택해야하는데 투과목이나...
-
집에있으니깐 2
3시간째오르비중
-
물2지2로 간다
-
정시 궁금한거 0
현강 들엇던 쌤이 의대 증원 때문에 컷이 올라간거지 빵꾸 난 학교들이 많을...
-
노래 추천좀요 3
부르기 쉬운걸로
-
생윤 1컷이 1
30점대가 아니라는거에서 고인물 많은거 증명이다... 진짜 3등급 안나오면 죽는다고오 제발 ㅠ
-
뿌지지지ㅣ
-
동사 2컷 1
43일 가능성은 전혀 없을까요…?
-
리젠이 넘 느려요..
-
24수능 제가 기억하기론 5틀 5등급 25수능 0틀인데 시간 20분잡아먹음......
-
재수할때 3
학교 걸어놓고 아예 처음부터 쭉 안가면 어케돼요?? 강제퇴학인가.. 학교는...
-
수능100점만 지원 가능? 화작97인데 강민철 박석준 둘 중 하나 넣을 것 같음
-
ㅈㄱㄴ
-
왜케 시작하기가 싫지
-
문과에도 영향있을까요?
-
한완수 미적 상하 해봤는데 도움 받기는했으나 솔직히 몰입이 잘 안 됨
-
블프인데 0
살게없네..근데도 뭐살지 고민하는것이 나란 인간
-
나지금이미지너무이상한듯뇨
-
내신을 ㅈㄴ 열심히 해도 5 뜸 이해를 한 것 같은데 시험만 보면 뭔지 모르겠어...
-
ㅈㄴ 별로네 좀 이쁘게 만들어주지
-
덕코주세요 11
네
-
언제쯤 개강하시는지 아시는 분 있으신가요 12월 한달안에 개념강의 듣고싶은데...
-
혹시 올해 강대 반수 최소컷 얼마인지 아시는분 계신가요?
-
미련이 좀 사라짐... 그동안 그리워했던 나는 뭐였을까...염탐하길잘한듯
-
뻥임뇨
-
ㅈㄱㄴ
-
막상 확통이 어렵게 안나옴 24 25둘다 흠
-
짱쌔게 꼬집.. 3
-
낙찰받은지 1년은 지난거 같은데
-
제발 41점까지 품어주심 안되겠습니까?ㅠㅠ 표점증발로라도 ㅈㅂㅈㅂ 논술도 야무지게...
-
보안 문제로 아이폰 못 쓴다 이런 말도 있던데 병사한테도 해당되는 말인가요
-
세종대 정시 1
어느정도 선이 가나요.. 문과 젤 끝자락도 괜찮아요.. 성수 쪽에 살고싶다..
-
인생 망한 것 같다 12
재수생인데 수능 망침 어떻게 살아야 할질 모르겠음 하아아
애초에 명제를 생각해낸 논리부터 고려하셔야 될 거 같아요. ' 00에서 0보다 클 때, f(a)/a>f(b)/b이면 f(x)는 위로 볼록이다'라는 명제를 수식으로 증명하려고 할 수 있지만, 역으로 반례를 찾으면 거짓이 됩니다. 아마 대강의 그림을 그려보시면 반례를 찾으실 수 있을 겁니다. 아니면 적당한 삼차함수를 잡으시고 기울기를 관찰하셔도 됩니다. 즉, 수식으로 참임을 증명할 수 없습니다.
조건이 af(b)/b뿐이라면 반례가 존재합니다. 그런데 실제 저 문제를 풀때 명시된 조건을 가지고 위로 볼록으로 판단해서 푸는 해설말고 다른 해설을 본적이 없어서 질문올린거에요 ㅎㅎ ㅠㅠㅠ물론 여기서 위로 볼록은 (0,1)에서의 위로볼록입니다.
저도 완전한 풀이 올리고 싶은데 수험생인지라 시간이 너무 오래 걸릴 거 같네요 ㅜㅜ(어려운 문제긴 해요 ㅋㅋ), 대신에 포카칩님이 쓰신 '수학영역의 비밀'이라는 책에 이문제에 대한 논리적인 풀이가 있습니다. 아마 해답지 말고 본문 속에 있을 거에요. 주변에 친구 책이나 아니면 서점 가셔서 한번 찾아보시길!!
오오 그렇군요 한번 찾아봐야겠네요 ㅇㅂㅇ
명시된 조건은
다항함수 f(x), f(0)=0 0