[박주혁t] 이해원모의고사 A형 3회 29번 해설강의입니다.(무료 동영상)
안녕하세요?
오르비클래스의 생계형강사(...) 박주혁t 입니다^^
지난 주말에 오르비에서 일어났던 교재이야기(?)에 댓글로 달았던 약속인,
이해원모의고사 A형 3회 29번 해설을 올립니다. (맛보기 파일에 6-1강 입니다.)
이계도함수도, 합성함수 미분도 사용하지 않았습니다만, 연산량이 좀 많아졌네요ㅠ
저도 검토를 더 열심히 하겠습니다.
링크는
http://class.orbi.kr/class/262/#class-lecture-list
입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
아니 해설강의 글에 난데없이 심쿵사진을 올리심 어쩌나요..ㅎㅎㅎ
암튼 감사합니다. 개인적으론 다소 하자가 있는 문항이 아니었나 싶네요..
네 저도 약간 아쉽네요ㅠㅜ
사진은 저도 요새 애들을 많이 못 보는터라서요ㅠ
1. 가장 좋은 풀이는 미통기 내에서 합성함수의 미분법으로 푸는 풀이를 정당화 시키는 것이겠죠. g(t)를 적분으로 표현한 이후에 적당히 구간을 쪼개 주면 [6-t/2, 6] 구간에서 f(x)를 적분한 것을 다시 x에 대해 미분하는 것을 f(x)를 x축 방향으로 평행이동시킨 함수를 생각해서 그냥 적분을 해치워버리고 다시 미분하는 방법이 있습니다. 물론, 이 과정에서 일종의 치환적분의 내용이 들어가지 않는 것은 아니나, 함수의 평행이동 정도로 충분히 미통기 범위 내에서 정당화 시킬 수 있을 것입니다.
2. 부정적분에 대한 설명은 약간 위험할 수 있습니다. 애초에 수능정도의 시험에서 부정적분으로 애를 먹는 경우가 있을리는 없겠지만, 설명하신대로 부정적분을 이미 '정해진 함수 F(x)'를 적당히 평행이동시켜 얻은 함수로 보는 것은 부정적분에 대한 맞는 설명은 아닙니다.
해설을 보면 f(x)의 부정적분을 1/4 (x+2)(x-6)^3을 평행이동시킨 함수로 볼 수 있다(또는 봐도 무방하다)는 식으로 설명을 하시는데, 애초에 indefinite integral은 일종의 multi-valued function이므로 given function을 평행이동시켜 얻은 함수로 보기보다는 그냥 int_a^x{f(t)dt}와 상수차(즉, 평행이동 차이)만큼 나는 함수들은 모두 부정적분이므로 그 중 계산하기 편한 것을 '선택'하겠다고 설명하시는 게 좀 더 맞을듯합니다.
사실 이게 애초에 미적분학의 기본정리가 의미하는 바이기도 하니까요.
2번은 동의합니다^^
앞으로는 검토를 더 열심히 하겠습니다ㅠ