2015학년도 09월 리듬농구 모의고사 수학 영역(B형) (예비교사 해설)
2015학년도 09월 리듬농구 모의고사 수학 영역(B형) (예비교사 해설).pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
입시 커뮤에서 성별을 밝히면 어떤 이익이 있을까요? 전 정말 모르겠네요 모르겠다
-
대충 플레이타임 5~10시간 정도 나오는 걸로 퍼즐 요소는 싫어하지 않음
-
기분이 좋아짐 7
속이 시원해짐
-
투표 5
다 잡아낸다
-
수1수2미적 1
개념 진도 한번에 나가는데 다들 몇개월 걸림?
-
표본이 메가나 ebs가 더 많아서 더 정확하지 않나요? 먼가 난리 난 분위기인거같길래
-
미친것 적당히해야지 분수에맞게고르렴 기하 하지마 확통은 통과
-
인문학, 자연과학, AI기반 3가지 그렇다고 특정 전공만 할 수 있는 것이 아니라...
-
지금 내가 벌점까지 쳐맞아가며 오르비 정상화할라고 혈투중인데 ..너희 다...
-
오늘 일병 담 5
드디어...ㅋㅋㅋㅋㅋ 26년 ㄹㅇ 까마득하다 예전엔 그냥 감조차 안와서 아무 생각이 없었던 거였어
-
아니 폭빵 예측을 하는게 생겼어요?? 이러면 심리전 두번해서 난 펑크라고 생각해서...
-
저도 뉴진스 노래 좋아하고 잘되면 좋겠다고 생각하지만 다들 수능 공부 많이 하셨으니...
-
병역메타나 합시다 11
군대 다들 언제쯤 가시거나 다녀오셨어요?
-
시대 70-72라는거같던데 하ㅠㅠㅠㅠ 걍 ㅈㄴ 우울하네
-
탐구 망쳤는데 중경외시는 될까요.. 화작 97 확통 88 영어 2 사문 45 세계사...
-
갈 데도 애매하네요 ㅠㅠ
-
난 좀 보내주면 안되나 엉엉
-
이건 걍 키보드바꿔야함?하는겜 롤이라 q젤 많이씁니다 으 다른데 돈쓸데도 많은데 하필 ㅋㅋ
-
학교도서관에서 2
고1수학공부하기
-
공통 1틀인데 표점 140 가능?
-
어디갈수잇지
-
여캐프사=남자 12
남캐프사=여자 고로 나도 여자임 병역의 의무 컷 Let's go
-
으음
-
내 범고래가!!
-
저는 한 달 뒤 1월 1일이 되면 옯갇님이 돌아오실 거라고 믿어요 6
그러합니다...
-
내가 왜 그랬을꼬
-
저는 남붕이같나요? 25
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
저번 백양나무님처럼 메타가 확 뛰어서 올라갈 때도 있지만 요즘 오르비는 대부분...
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
전국민 중성화가 이 모든 혼란을 잠재워줄 수 있지 않을까
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
저번에 몇화까지봤는지 기억이안남
-
방송 on
-
와 뭐야 10
진짜 한 판 붙나요
-
수능 수학 범위 내에서 불호가 가장 높은 과목은 수1일 수밖에 없는 듯 수2,...
-
??
-
딸 수 있음?
-
어쩌다 어떤 글에서 수학 고민 어쩌구 하는 글 보고 본인 현역때랑 비슷한 상황인것...
-
겨울 느낌 노래 8
좋아요
-
커리어는 그대로
괜히 클릭해본 문과는
B형의 위엄에 이마를 탁 치고 갑니다.
감사합니다 예비교사님 !!
저번에 사관학교 해설부터 시작해서..너무 좋더라구요
아까 다호라에 올라온 해설강의 보려고 하는데.. 영 시간이 오래 걸릴 것 같아서 !!
감사해요 ㅎ
ㅎ
9월에도 올려주실 꺼죠? (찡긋)
ㄷㄷㄷ;;
ㅋㅋㅋㅋㅋ 9페이지에서 육성으로 ㅁㅊ소리가 절로 튀어나오네요 ㅋㅋㅋㅋㅋ
후.......... 진짜 9페이지 10페이지에서 매우 공을 들이신 흔적이........
님아 빨리 논술 자료 올려주세요~!
기다리고 있어요 ㅎㅎ
빠...빨리 제작하도록 하겠습니다 ㅠㅠ
ㅌㅋㅋㅋㅋ30번 나같으면 해설쓸때 귀찮아서 그냥 oq 대칭점이랑 교점있는 t찾으세요! 하고 끝낼듯 ㅋㅋㅋㅋㅋ
저기 죄송한데 13번 질문좀 할수있을까요??
bn일반항 구할떄 그냥 n은 2이상부터 라고 생각들었는데 왜 n은4이상부터라고 내신거죠?? 출제 의도를 잘모르겠습니다...ㅠㅠ
계차에서 n = 2이면 빼는 첨수가 이상해져요.
상쇄되는 효과를 확실하게 해주려고 n = 4로 잡으셨다고 합니다.
다행히 그 부분은 계속 붙잡고 의문을 가지지 않는 이상
문제 푸는데 지대한 영향을 끼치는건 아닌지라
생각했던 만큼 의견들이 많이 없네요.
스스로 이렇게 해설을 다 쓸정도면 수학실력이 어마어마하신듯
방심하세요? 가 무슨 뜻인가요
쉬우니깐발까락으로푸세요
방심하고 그냥 뇌의 간섭 없이 반사적으로 풀라는 의미로 해석가능한 것 같습니다.
삼심번 한문장핵심요약해주실뿐..
원점에서 대칭된 평면에 내린 수선 높이의 두 배
정도로 요약할 수 있지 않을까요.
29번 난짱극이 뭔가요? 계산이 쉬워지는것같은데 알려주세요!
http://cafe.naver.com/pnmath/355274
저기에 써놨습니다~
난짱극에서 루트 1-4세타^2이 1-2세타^2으로 바뀌나요
테일러 전개라기 보다는 이항전개에 의한 근사라고 하는게 더 정확합니다.
(1 + x)^n = 1 + nx + {n(n-1)/2}x + ...
에서 n을 자연수에서 유리수로 확장가능하고 (그 유리수를 1/2)
x가 충분히 0에 가까우면 x = 0 에서의 접선 1 + nx로 근사하는 것이지요.