B형 30번이요
거리 함수 미분이 그렇게 복잡하고 미련한 풀이인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
”10모 한국사 50“
-
인간관계때문에 1
공부에 집중이 안되네 아오 공부 못해먹겠다~
-
얘들아 공부해 2
넵.. 할게요,,
-
수완 어느정도 시간 걸리나요? 2컷 정도 실력입니다. 담주 월화수는 그냥 수완이나...
-
이거 자주 보다보니까 뭔가 여운이 있음…
-
지금 보이는분들 내년에 못본다 생각하면 너무 슬픈데
-
남은 기간 0
실모를 푸는 게 맞을까여…
-
자꾸 애매하게 읽고 억지로 푸느라 시간 너무 잡아먹네
-
숙취 망함 6
쏘맥 이런 ㄱㅓ였으면 회생 가능ㄹ했지만 어제는 너무 고도수를 마심 걍 속 존X 쓰림
-
헬스하면 공부가 하고싶고 공부하면 헬스가 하고싶으니 번갈아가면서 하면 계속...
-
이 글 보고 그냥 지나칠 시 수능 때 지금까지 성적중 최고의 성적을받을거임 성적 받음
-
현장감 없이풀어서 그런가 나쁘지 않은것같은데 40, 45 오답률이 개높네 공교롭게...
-
늦버기 6
-
학원에서 모고보다가 어제 새벽에 햄버거먹었더니 가스찬느낌이라 문학풀다가 소리안나게...
-
평균테스트 2
목포대 약대 주면 가냐?
-
영어 재밌네 6
국어보다 글이 단순하다는게 매력인듯
-
완전 쌩노벤데 김종웅t 3시간 짜리 인강 보면 3은 뜰까요?
-
이번에 과탐 허수 빠짐 이슈 + 불국어로 나오면 지역인재 최저 4합인 메디컬인 컷...
-
난 항상 내 대학은 여기뿐이다라는 생각을 하고 지내와서 목표가 매우매우 뚜렷한데...
-
그니까나는힘을내야돼요 우리모두오늘도힘내요
-
어휘 말고 다맞았는데 어휘 오답률이 65%...
-
그립다 파생어 0
였음? 그리+형용사화 접미사 ㅂ 이어서 파생어라고 하는데.. 그동안 단일어인줄 알았음
-
책읽어요 3
재밌을거같아요
-
영어 시간 시간 0
영어 시간 줄이는 법 좀요 ㅈㅂ 보통 2 뜨고 가끔 1 뜨는데 2 뜨는 이유가 시간...
-
춥다 0
마음이
-
아침배모 5
교회 맨 뒤에서 풀거임ㅁ
-
이게머야....
-
다들 안녕히 주무셨나요 10
좋은아침이에요
-
브릿지 풀고 실실대고 있다가 적생모풀고...... 저거 근데 1컷 저거 맞나..?...
-
이나경 카페가 열린 건 아니고요 그냥 카페에서 이나경 생각했습니다 카페에 간 건...
-
지금 이 시점..서성한중 떨 ’경희대‘ 여기 주면 가냐..?(메디컬 제외임)
-
음
-
실모 바닥남 9
지방이라 당장 구할수도 없는데..
-
작년엔 나도 금딸선언 동참했는데
-
5000부 판매돌파 지구과학 30분의기적 파이널 총정리집을 소개합니다. (현재...
-
국수는 딱히 1년 논다고 내려가진 않는데 지구는 걍 아무것도기억이안남... 이왕...
-
으엉
-
애정하는 가수(natsumi) 모음집
-
궁금증 해결좀요 2
러셀은 바자관 다니는 사람 아니여도 돈 내면 수업을 들을 수 있잖아요 시대인재는...
-
23년 11덮
-
나눠주면 내일 나눠주려나…
-
화법 질문좀 0
타인이랑 대화할 때, 내가 질문했는데 상대도 질문하면 어떻게 해야해요? ex) 나:...
-
하...
-
영어 87-9만 계속 나오는데 시간 줄일만큼 줄인거라 더 못줄일거같은데 기도메타밖에...
-
얼버기 7
귀여운 코무기 보고가
-
에라이 9평 처럼 쉽게 나와라 그냥.. ㅋㅋㅋ
-
기상 6
수능까지 88시간
좋은풀인데 누가그러나요
별로 복잡하지 않아요 그렇게 풀어야 제일 명확하고요
법선을 이용한 풀이는 엄밀하지 못한 풀이인가요?
거리식 미분에 비해 계산은 간결한데,,, 뭔가 명쾌하게 답인느낌이 안들어서(일단 맞기는 맞았습니다만은...)
엄밀한데...
고교 수준에서 엄밀하지 않은데 직관적으로 충분히 해볼만한 타당한 추론이다
이게 맞는말입니다.
점에서 원의 반지름을 늘려가다보면 접하는 점이 거리가 최소일 것이고 , 원에 외접하므로 그 점을 지나며 원에 접하는 직선은 점과 원의 중심을 잇는 선분과 수직이므로 ~~ 비약인가요?
그냥 고등학생 입장에서는 시중문제집을 풀 때 필요한 직관적 사고 요소중 하나다 이정도?
다만 이 부분은 시중문제집으로부터 습득 후 암기된 사고인 것 같습니다. 라그랑주 승수법이라고 있어요 ㅋㅋ
http://blog.naver.com/mindo1103?Redirect=Log&logNo=90154212128
참고하시면 될듯 합니다.
와 역시 수학전공이시라 그런가 다르네요 ㄷㄷ 배우고 갑니다
저도 그렇게 생각하는데 다른 풀이를 하신 분들이 그렇게 풀면 계산이 복잡하다고들 하셔서;;
법선을 이용한 풀이가 엄밀하지 못한 건 아니지 않나요?
한 정점과 어떤 곡선의 한 점을 이은 직선이 그 곡선 위의 점에서의 법선이 될 때. 그 거리 함수는 극대 또는 극소입니다.(그중 최대, 최소도 있겠구요.) 결국 법선을 이용해 구해서 여러개가 나오면 비교하면 되는 것 아닌가요.
그리고 법선으로 풀면 계산은 정말 간단하게 나오는데.;ㅋ
아.. 폐곡선이 아닐 수가 있어서 법선으로 거리의 최댓값을 구한다 하면 엄밀하지 않을수도 있다고 생각 할 수도 있지만 주어진 문제는 최솟값에 해당하는 점을 주었잖아요. 그럼 엄밀한 풀이가 되지 않나요?
왜 법선으로 풀었을 때의 점이 항상 최소가 되는지 이 점이 증명되어야지 엄밀한 풀이라고 할 수 있지않나요
문제 이해하고 바로 이걸로 손이 스사샥 움직이니까 스르륵 금방 나오지 않나요? 거리가 루트 씌워진 다항함수로 나오니까 그 다항함수를 미분하고 s=2/3를 대입하면 값이 0이 되고 그 때 t와 미분계수를 샤바샤바해서 넓이 식에 대입하면 k가 땋! 하고 나오는 거 문제 이해하니까 그렇게밖에 될 수 없구나 라고 생각했는데