2014학년도 6평 수학 A형, B형해설 파일 올려요~~
2014학년도 6월 평가원 해설지(B)_해설완성본-hwp.pdf
2014학년도 6월 평가원 해설지(A)_해설완성본-hwp.pdf
에휴~~ 노가다 해서 이제 해설 파일 완성하였네요...손으로 푸는 것과 달리 워드 작업도 하고, 그래프도 그려 넣느라 힘들었네요..
하지만 여러 분들이 보기에는 한결 예쁘고, 깔끔할 겁니다.... 많이 많이 배포 해 주세요...~~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2025 반복되는건 기분탓인가
-
25이하라는 조건이 따로 있었음? 다들 1,3,5,9,15 나왔다길래 난...
-
기하 3-2번답 최대최소 9랑 1맞나요???? 기하처음봣는데 거기 공식으로 어떻게...
-
임신존나시키기 6
왜들러옴
-
어루버기 2
-
중앙대 오전논술 0
소프트웨어 학부면 컷 몇점정도 될까요 ㅠㅠ 3-2 못풀어서 15점 날리고 3-1...
-
약대 가려면 0
지금까지 생1지1이 안정적인 1등급이 안 나왔는데 약대 가려면 그냥 사탐 두과목으로...
-
이쁜애들 왤케 많냐
-
아무것도할수있는게없다
-
만년 2,3등급 친구가 (올해 초에 수학 공부 시작하긴함) 다 풀었다는데
-
예비재수생인디
-
어땠음? 합격컷 높으려나
-
부교에서 1컷 48이라는데 어케 생각하심? 세사는 응시인원도 적어서 언급 많이...
-
2년 ㄱㄱ
-
뭐가 있죠
-
지금 지하철 타고 가는중읻데 1시까지 입실인걸 못보고 1:30까진줄 알았는데 1시...
-
한양 상경 0
한양 상경 인문은 ㄱㅊ고 수리 1,3 맞추고 2번 풀이 다 쓰고 정답까지 냈는데...
-
예전 글인데 다시 퍼올립니다 읽고 가슴에 무언가 와닿았으면 합니다 꿈꾸는 공대생...
-
텔그에서 카관의 0
지금 몇점대에요??
-
한양상경논 2
아 2번문제 1,3,5,9 15까지 구했는데... 코사인 법칙으로 푸는것이라고...
-
어땠음 계산 개많던데
-
별로네 재미없어보임 학교안은 엄청 세련됨
-
다들 생각이 너무 깊어
-
(가) 참정권 - 여성 '제외' (나) 수은 - '포괄 정책' (다) 추상화 -...
-
텔그에 초록불 들어왔다... 제발 탐구병신을 구원해다오..
-
문과 재수 4
근데 문과는 재수하면 어디서 함? 기숙이나 재종가면 탐구는 어차피 인강으로 대체...
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
일단 이력서 열심히 쓰는 중인데 지방에서 겨울 보내고 다시 서울 대학으로...
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
-
멍청이 나형러에게 사배자 나형 전형 부활 점 ㅠ
-
문제는 쉬운듯 하나빼고 다품 미적 마지막
-
시험 내용 지금 말해도 괜찮음?
-
흠ㅋㅋㅋㅋㅋㅋ 솔직히 과목이 너무 쉽긴해서 쫄리네
-
하루에 공부 6~7시간이면 수학은 몇시간 정도가 적당한가요? 3
지금 하고 있는 수학은 수분감 0단계, 학원 숙제 이 두개 하고있는데 수분감...
-
컴 소프트 전전 많이 힘들겠죠…? 생지러라서..
-
대학이 높을수록 길이 많아지는건 맞아도 그게 전부가 아닐뿐더러 오히려 수능을...
-
물화에 비해 표본 크게 안 오른 것 같은데
-
대구물가머노ㄷㄷ 2
칼국수가 5000원이네 칠성시장에서
-
냥대 상경 수리 6
1번 1번 최대 x=8 최소 x=6맞나유?? 구간 [-2,3] [4,8] 나오던디...
-
얼마나 옴? 우리 고사실은 25명중에 5명 옴 ㅋㅋㅋ
-
얼마나있나요? 지금 출발하셧나요? 어디쓰셨나요?
-
장난아냐
-
뭐 이번에 탈출이 가능할진 잘 모르겠는데 나처럼 우연의 연속이 계기가 된 사람이 얼마나 될까...
-
냥대 상경 0
답만 틀리거나 2번에 약수 하나 빼먹은거 과정은 다 맞았는데 부분점수 주나?ㅠ
-
도대체 사랑이 어떤거길래
-
대학들이 하고 싶다고 할 수 있는게 생각보다 없음 15
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
정말 감사합니다....
일등으로 다운받고 댓글 달앗네요...
열심히 공부할게요 ㅜㅜ 그리고 쪽지 보내드렷는데 수학관련 상담 ㅜㅜㅜ
답장좀 해주시면 감사하겟습니다....
일단 a형 해설지도 작업 해야 하고 6평 분석노트 a형 b 형이 나와야 해서 그거 먼저 할께요 그런다음에 상세히 답변 드리죠
고맙습니다!!
넵~~30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~ 그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
고맙습니다!
마찬가지로 30문항 해설에만 그치지 마시고, 연계된 수능기출과 EBS를 모조리 공부하셔야 합니다~~~
그리고 향후의 공부 일정까지 세워 보시고....
6평 평가자료는 분석노트에서 말씀드리겠습니다.~~
감사합니다 ^^ ~ 선생님의 킬러문항강의를 많이 연습해서 그런지 이번시험은 평소보다 좀 더 쉽게 느껴진것같아요.
분석노트도 기대하겠습니다!
감사합니다 분석노트는 월요일에 만날 수 있습니다
오늘에 Grand Final 나왔네요
폭풍 교재 작업 중...
잘 보겠습니다
넵~~~ 열공해서 좋을 결과 있으시길~~~
동훈쌤!!! 21번 해설지에 f(x) 미분하신거 하나 잘못된게 잇는 거 같아요!!
(x≥0) 일때 6x-a가 아니고 3x^2-a 인거같아요!!
다른건 너무 깔끔하셔요ㅎㅎ감사합니다!
A형 이죠? 에구 고마 우셔라~~~~
수정해서 다시 올렸습니다.. 감사~~
너무 익숙한 닉네임 이네요... ^- ^
죄송한데요ㅠㅠ수학A형18번 변BH+변HA=루트5k/2+2k/루트5 왜이렇게나온거에요??....
직각삼각형의 세 변의 길이가 2, 1, 루트5 이렇게 나오죠?
그런데 내접하는 직사각형의 가로 2k, 세로 k 라고 한다면 이 길이를 통해 다른 작은 직각삼각형의 다른 변의 길이도 알 수 있는겁니다.
ebs 수능특강과 완성 다 풀고 샘 ebs변형푸는것과 개념정리를 이 번 한달간 하는게 제일 좋을까요??
그 이전에 일단 이번 6평에 좋은 점수를 받았다 하더라도 이번 6평과 연계된 기출과 EBS를 샅샅이 찾아 분석 + 평가하는 시간을 조금 더 갖으세요.
제가 6평 분석노트에서 이런 점들을 부각시킬 것이며, 예전과 다른 경향성 들을 구체적으로 파고들어 학생들에게 전달하려고 합니다.
그리고 나서 향후의 공부 방향을 설정하도록 하세요... EBS변형도 도움 빠르게 돌리시길....
30번 문항 (n,m) 이 아니라 (m,n)을 구하는 문제예요!
그리고 (1,20)를 (1,2)로 잘못쓰신거 같아요~ 오타내신듯..ㅎㅎ
감사해요~ 잘봤습니다!
쵸고빅님 고마워요~~~ 지금 6평 분석노트 만드는데 , 미리 오타를 잡아 내니 다행이네요...ㄱ ㅅ
18번에서 왜 두 직사각형이 닮음인가요?
두 직사각형의 가로, 세로의 길이의 비가 1:2로서 동일하기 때문입니다.
A형 21번과 관련하여 질문 드립니다
극댓값의 정의는 함수의 개형이 증가에서 감소로 바뀔 때로 알고 있습니다.
a>0일 때 함수 f(x)는 x=0에서 미분은 안 되겠지만,
극댓값 0을 가지지 않나요?
따라서 극댓값이 5라는 문제의 조건에 위배되므로 a<0라는 것으로 문제를 풀어나가
야 할 것 같습니다만........
네 맞아요 극대값이 0 이라서 모순입니다
해설에는 a>0일때 함수 f(x)의 극댓값이 존재하지 않는다고 나와 있어서
수정이 필요하다고 생각해서 언급했습니다......
감사합니다. 6평 분석노트 만들때에는 반영했네요.. 고맙습니다~~~
코난샘 혹시 모평 당일날 올려주신 현장 풀이 그대로 있는 시험지 파일 다시 올려주실수 있나요...? 어제 저장을 안해놔서 오늘 다시 찾으려고 하니 없어서요... 혹시 그대로 있는데 제가 못찾고 있는 건가요...? ㅠㅠ
헉~~ 현장 풀이요? 워드 작업 하고 나서는 필요 없겠다 싶어서 버렸는데....
그리고 그 글도 해설지 Reload 시키고 나서 제가 지웠습니다...
혹시 무엇 때문에 그런 건지 물어 보면 제가 답변해 드릴께요....
선생님 A형 10번에서 연속인 걸 찾을 때 좌극한이랑 우극한이 같고 그 극한값이 함수값이랑 같아야 연속이잖아요 근데 해설에 함숫값이랑 우극한만 따져봤는데 어차피 좌극한이랑 함숫값이 같아서 생략한 건가요? 이전에 어떤 문제를 풀 때도 해설에는 함숫값이랑만 비교하더라고요 아직 개념 공부를 도함수의 활용 전까지 해서 모르는게 많습니다 어차피 다항함수니까 극한값이랑 함숫값이 같아서 그냥 그렇게 한건가요? 답변 부탁드리겠습니다
네, 좌극한과 함수값은 당연히 같이 때문에 좌극한을 굳이 쓸 필요가 없어서요..
님이 말씀하신 것처럼 다항함수이니까 극한값이랑 함숫값이 같아서 그렇게 한 거 맞아요~~~~
질문이 있어서 쪽지 보냈습니다. 답변 부탁 드려용
네 답변 드렸어요~~~