함수의정의?
수학에서 함수의 정의가 x값에 y값이 각각대응되면 x,y가 함수관계라고알고있는데..
그러면 포물선 타원 원 이런건x값에 y값 2개가 대응되니까 함수가 아닌가요? 근데 어떻게함수만할수있는 미분,적분을 할수있는거죠?ㅠ 함수의 성질을 가지는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생각보다사람들이 남얼굴에관심이많구나라고 생각했었어요
-
ㅇㅈ 2
하기엔 내가 너무 못 생김
-
스마일효정
-
뉴분감까지 끝내고 풀만항 수1 엔제
-
오르비언들에게 박탈감을 주기 싫어서.
-
갑자기불현듯지나가는닉네임
-
사실상 모두가 고정닉 달고 활동하는 거라 함부로 잘 말 안 하는 듯.. 오래된 생각이다.
-
그래서 군대감
-
국어 정석민 수학 정병호 영어 이영수 쌍사 ebsi
-
벌써6일차네요
-
눈이 와 2
펑펑! 이 노래 슬슬 들릴 때가 됨
-
시간도 남아서 걍 수학상하 복습 할려는데 잘 맞는 인강쌤이 수학상하는 없고,...
-
비행기표 가격 <-- 앰뒤
-
“손가락 두개” 2
기억 나는 사람..?
-
토로생선구이<생선구이진짜개맛있음 낮술을참을수없는맛 아미가<정문왼쪽 밥집인데 개쌈...
-
아 보기 시러
-
이게엊그제같은데 0
https://orbi.kr/00067672653 갈틱폰 제대로한건 첨이라 근데 저게왜3월?
-
수능6회응시(재미로친거빼면3번이긴함)에 20후반돼서 수능 원하는 성적 못받았는데도...
-
19)님들 질문 있음 26
히토미 번호 가지고 오르비에서 히토미 티어표 작성하면 음란물 공유로 처벌받으려나
-
욕이 달린다 : 존잘 ㄱㅁ , 훈훈하네 : 평범 귀엽게 생겼다 , 착하게 생겼다 : 오르비언
-
충남도·대전시 행정통합 추진 선언…'슈퍼 광역도시' 만든다 1
(대전ㆍ충남=뉴스1) 이찬선 기자 = 충남도와 대전시가 행정구역 통합을 향한...
-
국어 비문학 지문을 이해없이 풀 수 있지 않을까요? 8
그동안 기출 보면서 푼 문제들 사실 생각해 보면 이해란게 전혀 필요하지 않은 것...
-
솔직히 거기서 거기같긴 한데
-
님들 이미지 3
-
선넘질받 23
대답 꺼려지는 질문 하시는분께는 천덬 드릴게요 신상X
-
질받 해볼게요 6
선넘도 ㄱㅊ 내일 논술 기념..
-
ㅇㅇ
-
최저만 되면 진짜 면접 평타만 쳐도 붙을만 한데 국어 진짜 제발
-
나는너무많이해서 9
주변사람중에옯창있었으면 이미특정됐을듯
-
ㅇㅈ 5
에도 없다! 연세대학교 경영대학교
-
시청한 애니로 애니티어표 만들기가 취미인데 지금 1위 자리를 두고 봇치랑 빙과가...
-
특정되서 오르비사람들이 저의진짜모습을알게될까 무서워요...
-
서버 터진다 이런 건 걍 말도 안 되는 소리고 ㅋㅋ 걍 실친이 내 오르비 계정 알게...
-
왜 결말이 ㅂㅅ같냐 강연금같은 명작은 없는건가… 걍 럽코 적당한 거 보는게...
-
얼굴ㅇㅈ하면 8
념글 보내주나요?
-
댓글 20개 이상 찍히면 대존잘인거임 ㅇㅇ 물론 여성분들은 대존예까진 아니어도 그정도 찍히긴 함뇨
-
여르비들이 한번만 만나달라고 무수한 쪽지를 보낸다는거임 ;;
-
5명다 짤녀 닮은 미소녀였음
-
흠.
-
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
우하하 4
새르비 재밌누
-
한완수 ㄱㅊ? 5
재종 들어가기전에 한완수 하려는데 괜찮음? 수학 3따리 턱걸이라 걍 노베임 교과개념부터 할까요?
-
댓글 너무 달려서 오르비 서버 터질까봐.
-
념글보내줘 6
갈거업ㄱ잖아딱히
-
와 화력개빡세네 2
인증하면 세상사람들 다알겠다
-
다라 말했지만 니 래퍼 친구 내 flow 베껴가 나 의 해는 내 방안에 있지...
-
삼수망한후기 16
삶에대해다시생각하게됨 사소한것에감사하게된 게아니고그냥계속화남 억울함 사수하고싶음...
-
ㅇㅈ 16
펑
-
멍청한사람이싫어요 18
그래서내가싫어
-
나때는 악뮤온다
포물선, 타원, 원 등은 함수가 아닙니다.
하지만 구간을 나누어보면 함수입니다.
예를 들어
x^2 +y^2 = 1이라는 원은
y=root(1-x^2)
y=-root(1-x^2)
이라는 두개의 함수의 합집합으로 표현할 수 있습니다.
따라서 각각을 따로 미분을 할 수 있다 생각하면 편하구요.
그리고 y= 로 표현되는 평소에 배우던 함수 들로 나누어서 표현할 수 있는 함수를 음함수라고 합니다.
즉, x^2+y^2=1 같은 함수는 음함수입니다. 여기서 따로따로 미분하지 않고 한번에 할 수 있는 방법으로 음함수의 미분법이라고 따로 배우는 것이지요.
자연수개의 엑스값에 하나의 와이값이 대응되는게 함수죠..
음 y축과 평행하게 선을 그어보면 원이나 포물선은 교점이 두개가 생기죠?
즉 하나의 엑스값에 두개 이상의 y값이 대응되는 경우라 함수가 아닙니다.
다시 설명하면, 하나의 엑스값은 하나의 와이값에만 대응될 수 있지만 하나의 와이값은 여러개의 엑스값에 대응됩니다. 전에 야매로 배울땐 x에서 y로 화살이 나가는데 화살이 둘로 쪼개지지 못한다고 배웠습니다.
(아 문돌이가 본능이라 글로만 설명하게 되네..ㅜ)
함수의 정의는 1.정의역의 원소는 모두 함수에 의해 대응이 되야 하며 2. 그 원소가 각각 하나의 치역에만 대응되어야 한다는 것.
하지만 원같은 경우는 정의역을 제한해서 1번 조건을 맞춘다고 해도 2번 조건에서 여지없이 탈락하죠. 따라서 원은 어떠한 경우라도 함수가 아닙니다. 하지만 원점을 중심으로하는 단위원에서 (0,1)에서 미분하라 했을때에는. 원을(0,1) 근방에서만 보면 함수의 성질을 만족합니다. 그래서 이런 경우를 두고 implicit fuction. ㅈ즉음함수라 합니다. Implicit는 영어로 감춰져 있다는 뜻이죠. 다시 말해 전체로 보면 절대 함수라 할 수 없지만, 미분을 정의할 수 있는 충분히 작은 부분만보면 함수라 할 수 있다는 거죠. 이것은 비단 원뿐만 아니라 우리가 좌표평면에서 그릴 수 있는 거의 모든 곡선은 음함수가 됩니다.