'모5순'에 대한 거의 모든 것
이번 영상에서는 수능 필수개념 '모순'과 관련된 5가지 주요개념(모순관계평가원 기출, 모순문장평가원 기출, 모순율평가원 기출, 모순적평가원 기출, 폭발원리)를 정리해봤습니다. 가끔 가르치시는 분들 중에서도 '모순관계'와 '모순적'을 헷갈리는 경우가 있으므로, 수험생이라면 이번 기회에 잘 알아두길 바랍니다.
덧: 흔히들 알고 있는 무엇이든 뚫을 수 있는 창과 무엇도 뚫을 수 없는 방패라는 모순 고사는 '모순관계'가 아니라 '모순적'(비일관적)에에 대한 이야기입니다. (한비자의 모순 논증에 대해서는 두보계 067 비슷하니까에서 다룹니다.)
덧: '모순 명제'는 때로 '모순 관계에 있는 명제'를 뜻할 때가 있습니다. 벤슨메이츠 '기호논리학', LEET 언어이해 기출 등에서 그런 용례를 찾을 수 있습니다.
--
논리학, 무료로 부담 없이 공부하려면?에서 이야기했듯, 저를 팔로우해두시고 무료로 올라오는 영상만이라도 다 봐주세요. 어떤 강사, 어떤 교재로 공부하든 도움 받을 수 있을 겁니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어제밤에 수능 망하는 꿈 꿈..ㅋㅋ 국어에서 부터 시작해서 탐구까지 싹다 망함...
-
ㅜㅜㅜㅜ
-
발사.
-
연계대비나 퀄 괜찮은것좀
-
실모만박박풀다 작년꺼풀어봤는데 미적 1컷이 84...? 9모 3등급인 내가 수능에선 1등급?
-
어디가 더 위치가 좋다고 생각하시나요
-
ㅋㅋㅋㅋㅋㅋ
-
갑자기 피부가 트네 왜지
-
내년에 인설 공대 목표로 수능보는데 조합 한번씩만 추천드려요!
-
충분히 재공되나요???
-
이번 6모 수학 4
10 12 13 14 15 19 20 21 22 28 29 30 틀렸는데 (단순...
-
필수 어휘로 간주되는 고전 어휘는 대부분 암기했음에도 예전 기출을 풀 때 처음 보는...
-
물론 장점도 있지만 들어도 애매하고 그런데 사탐 저둘빼고는 상관없다고 생각함
-
브릿지 수학 0
확통입나다, 10문제중 타율이 한 6~7문제 정도 되는데 실력이 몇등급정도...
-
ㅈㄱㄴ…?
-
생윤인지 사문인지 매년 오개념이슈 전통놀이처럼 터지는거 보면 5
오개념 따위 있을수가없는 화1이 천사같다
-
상상 0
퀄 더 좋은 거
-
경외심느끼면서 피하게됨.... 그 사람들 기분은 어떨까
-
이런거 왜캐 쳐띠껍지? 18
이런거 쳐써놓으면 걍 풀어줄라다가 포기하기누르고 나옴 그냥
-
ㅠㅠ 또 나만 마렵지..
-
1회 92 2회 96 3회 93인데 4회 난이도 걍 시발이네... ㅠㅠ 막...
-
한국식 MBTI 30
일단 난 SNJT인듯 마지막껀 좀 애매하긴 하네
-
강릉 천안 익산 전주 아웃서울 하고싶다
-
진짜 어캄? 느긋한가 좋아하면 수능판 잘 안맞는건가? 방금 푼 실모 예시로 들면...
-
분명 일반인을 위한 책인데 난 왜 책 내용이 머리에서 튕기지 싶었음
-
잠 깨는거 일어나는 거 책펴는 거 연필쥐는 거 의자에 앉는 거 샤프심빼는 거 지우개...
-
한 주도 빠짐없이 수업 도중에 화장실 감
-
30 못풀뻔했는데 운좋게 보여서 겨우 100점 96분 걸림
-
지듣노 0
https://youtu.be/SK6Sm2Ki9tI?si=r9aM3OeYmAicamM...
-
고1 통합과학 요놈때문에 사탐이랑 결혼하기로 결정함 내신도 통사1 통과 5였음 아까...
-
회차까지 추천해주면 감사띠
-
연세대신촌못가면 다 죽는거다 설령 결과마음에안드는데 기분은 괜찮아도 사시미칼로 팔...
-
ㅠㅠ 또 나만 어렵지..
-
어떤 문제는 도덕 배운 초등학교 고학년들도 풀 수 있는 수준인데 어떤 문제는 서울대...
-
오밐추 3
행복한 하루 되세요!
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
솔직히 지금껏 1도 체감 못하고 있다가 가족이랑 친한 후배들이 수능선물,응원 메세지...
-
ㄹㅇ 어지럽네 ㅋㅋㅋ
-
+ 국가장학금 폐지 난 걍 자퇴할듯
-
수학은 괴물들이 많더군요. 어지간한 난도의 시험은 시간이 남는 괴물들.......
-
구라안치고 망하지않아도 결과 마음에 안들어도 자살/자해 최소 둘중 하나는...
-
실모 칠면 종류에따라 다르긴하지만 1이 80%이상정도 나오는데 님들은 어떤편인지...
-
https://orbi.kr/00018415247 링크 타 들어가보면 알겠지만 진짜...
-
여러분 예열지문은 절대안나올 것 같은걸로 들고가세여 13
유명하거나 자주봤던 기출 지문 ㅊㅊ합니다 왜냐면 작년에 예열로 이비에스 인문 지문...
-
국어 기출 0
한번 더 볼까말까 이미 여러번 봤고 파이널 교재에도 전부 있음… 간쓸개랑 실모...
-
난이도 원래 이렇게 어려운가요?? 60점대...
-
...
-
퀄 상관 없이 뭐가 더 어렵나요 더 어려운거풀고싶아서요 둘 다 있긴 해서 시즌몇에...
-
jo79sd 같이 커피 받아요!
논리학 너무 어려워요.
수능이 너무 어려운 거예요. ㅠㅠ
이 내용도 전기추에 있나요?
폭발원리를 빼고는 다 있어요~
선생님 두뇌보완 좋아보여서 살려고 하는데 주로 논리랑 과학쪽 다루어 주시던데 법이나 경제쪽 다루는 책 추천해주세요
1. 두보계는 어떤 분야를 공부하든 추천합니다. ㅎㅎ
2. 법학은 아래 책을 참고해주세요.
https://atom.ac/books/7175/
감사합니다! 문제푸는책 말고 혹시 읽는책으로 그러니까 배경지식에 도움이되는 것으로 추천해주실수있을까요?
이해황 선생님 죄송하지만 정말 하찮은 논리적 딜레마에 빠져서 게시글에 질문드립니다..받으실 수 있으면 받아주세용!
2015년 정합설 지문입니다.
함축, 설명적 연관 모순없음의 포함관계에 대한 내용입니다. 모순없음이 가장 많은 명제를 참으로 만들 수 있고 그 다음이 설명적연관 그 다음이 함축 순으로 참이라 할 수 있는 명제의 수가 작아집니다. 한편 지문을 보면 함축은 필연적으로 설명적 연관이다 라고 나와있습니다. 그렇다면 '함축이면 설명적 연관이다' 라는 명제를 참이라고 할 수 있습니다. 근데 집합의 포함관계를 따져보면 함축이 설명적 연관에 포함되어있으므로 위의 명제를 바꿔 말하면 '포함된 집합이 참이면 포함하는 집합이 참'이라고 생각되는, 즉 거짓인 명제가 참이되는 딜레마에 빠졌습니다.
이를 어떻게 해결하면 좋을까요? ㅠㅠ
'내포'와 '외연'에 대한 개념이 뒤죽박죽인 것 같습니다. '머리야 터져라' "개념3. 외연, 내포"을 들으면 도움이 될 겁니다.
https://class.orbi.kr/course/1793