[MENTOR의 Review] 2021학년도 수능 수학Ⅱ
2021학년도 수능 수학Ⅱ 문제지.pdf
2021학년도 수능 수학Ⅱ MENTOR의 풀이.pdf
안녕하세요, MENTOR 이종현입니다.
2021학년도 수능 시험지는 2022학년도 대학수학능력시험을 준비하는 수험생들에게 가장 좋은 참고자료 중 하나일 것입니다. 그래서 MENTOR의 팀원들이 여러분의 효과적인 학습에 도움을 드리기 위해 [MENTOR의 Review]를 제공하게 되었습니다! 어제 업로드 된 [MENTOR의 Review] 2021학년도 수능 수학Ⅰ 아직 못 봤으면 Go Go!
첨부파일에 2021학년도 수능 수학Ⅱ 전 문항 (총 11문항) 파일과 제가 작성한 손해설이 있으니 확인해주세요. 아래는 그중 제가 선택한 세 문항과 함께 제 나름의 소감을 말씀드리도록 하겠습니다. 잘 봐주세요~
2021학년도 대학수학능력시험 수학 나형 17번
(2022학년도 버전으로 11~12번 정도 난이도)
2021학년도 수능 수학Ⅱ에서 유의미한 문제는 20번과 30번 정도라고 생각합니다. 수학Ⅱ를 충실히 공부했다면 다른 문항들은 충분히 맞힐 수 있어야 한다고 생각합니다. 그럼에도 불구하고 이 17번 문항을 다루는 것은, 다음 두 가지 때문입니다.
'정의'를 무시하지 마십시오. 많은 학생들이 수능 수학을 빨리 풀어내기 위한 '정리'나 '스킬'과 같은 도구들을 중요하게 생각하지만 정작 가장 기본이 되는 '정의'는 무시하는 경향이 있습니다. 또한, 분명히 위 문제를 '로피탈의 정리'를 적용하여 푼 학생들도 많을 것입니다. 물론 틀린 방식은 아니지만 시험장에서 결국 어려운 문항에서 막혔을 때 가장 도움이 되는 방향 중 하나가 바로 '정의'를 다시 되새기는 것입니다.
이 문제의 경우도 미분계수의 정의를 올바르게 적용하지 못했다면, '로피탈의 정리'마저 몰랐다면, 풀어낼 수 없었을 것입니다. 제가 이 말을 하는 이유는, 교과서나 개념서의 해당 파트에서 가장 먼저 등장하는 것이 '정의'임에도 가볍게 생각하는 학생들이 있기 때문입니다. '정의'를 무시하지 마십시오.
두 번째로는 바로 EBS 연계교재에 대한 이야기입니다. EBS 연계교재 꼭 푸셔야 합니다! 아래 문항부터 보겠습니다.
위 문항은 EBS 풀서비스에서 2021학년도 수능 수학 나형 17번 연계문제로 공개한 문항입니다.
(2021학년도 EBS 수능완성 수학 나형 p.157 15번 / 정답 ④)
거의 똑같죠? 물론! 연계와 관련된 이야기는 모두 결과론일 뿐입니다. 이 EBS 문항을 수능 시험 전날에 풀었다면 수능 시험장에서 '와.. 어제 푼 거랑 완전 똑같네..'라고 생각하면서 매우 쉽게 풀어냈을 테지만, 수능완성이 출시된 직후 푼 학생들은 연계를 전혀 체감하지 못하고 풀었을 것입니다.
많은 학생들이 시험장에서의 연계 체감, 연계율, 직접 연계 여부 등을 논하면서 EBS 연계교재를 가볍게 여깁니다. 물론 시험장에서 의미있는 연계를 체감한다면 정말 좋겠지만, '연습문제'로도 EBS 연계교재는 우수합니다. 시중에 정말 좋은 교재들도 많이 있지만, 굳이 '연계교재'라는 타이틀로 출시되는, 퀄리티도 괜찮은 EBS 교재를 거를 필요가 있을까요? 위의 사례처럼 실제로 매우 유사한 문제도 수능에서 출제되곤 하고요.
곧 2022학년도 EBS 수능특강이 출시될 텐데 꼭 풀어보시기 바라요! 저희 MENTOR의 팀원들도 여러분에게 도움이 될 문제를 만드는 데 EBS 교재를 적절하게 활용하도록 하겠습니다.
2021학년도 대학수학능력시험 수학 나형 20번
(2022학년도 버전으로 14~15번 정도 난이도)
개인적으로 굉장히 좋아하는 유형입니다ㅎㅎ 오직 하나의 극값을 가져야 한다는 것을 보자마자 도함수의 부호가 한 번만 바뀌어야 한다는 것을 파악했어야 합니다. 정적분으로 표현된 함수를 풀 때의 행동원칙 (1) 초깃값 대입과 (2) 양변 미분 역시 자연스럽게 떠올릴 수 있어야 하고요!
주어진 두 번째 식의 양변을 x에 대하여 미분하면 함수 g(x)의 도함수 g'(x)를 구할 수 있고, 도함수 g'(x)의 그래프에서 정적분은 부호를 지닌 넓이라는 것을 활용하여 함수 g(x)의 증감 여부를 판단할 수 있습니다.
상단에 첨부된 손해설을 반드시 확인해주시고, 고난도 문항일수록 그래프를 통해 가시적으로 함수를 해석하는 것이 유리하다는 것을 꼭 염두에 두시기 바랍니다!
위의 문제의 다운그레이드 버전으로, 참고하여 풀어볼 만한 쉬운 기출문제 하나 투척하겠습니다.
2013학년도 수능 수리 나형 21번 (정답 ②)
2021학년도 대학수학능력시험 수학 나형 30번
(2022학년도 버전으로 22번 정도 난이도)
마지막으로 30번 문항을 보겠습니다. '수학Ⅱ 30번'이라는 상징성을 지닌 마지막 문항이지 않을까 싶어서 많이 아쉽네요ㅠㅠ
과하지 않으면서 깔끔하고 예쁜 문항이 출제되었습니다. 구간별로 정의된 함수가 실수 전체의 집합에서 미분가능하다는 것 역시 다음의 행동원칙이 있다는 것을 잘 알고 계실 것입니다. (1) 연속 확인과 (2) 미분가능 확인! 즉, 좌극한=우극한=함숫값, 좌미분계수=우미분계수를 활용해야 합니다.
(소통의 편의를 위해 좌미분계수, 우미분계수라는 워딩을 사용했습니다.)
또한, 위 문항처럼 함수가 지나는 점이 주어졌을 때는 이를 관계식으로 활용해야 함을 반드시 기억하시기 바랍니다. 종종 주어진 좌표를 간과하고 문제를 풀다가 뒤늦게 확인하는 학생들이 있는데 처음부터 잘 활용하여 미지수를 줄여나가면서 푸는 것이 유리합니다!
위 문항과 함께 참고하여 공부하면 도움이 될 만한 기출문제 다섯 개도 아래 투척하고 갈 테니 한번 연습해보세요!!
2018학년도 6월 평가원 수학 나형 30번 (정답 243)
2018학년도 수능 수학 나형 29번 (정답 32)
2019학년도 수능 수학 나형 30번 (정답 5)
2020학년도 6월 평가원 수학 나형 18번 (정답 ⑤)
2020학년도 사관학교 1차 선발시험 수학 나형 30번 (정답 21)
최근에 킬러 문항의 난이도와 관련하여 이야기가 많은데, 올해부터 시험지의 구성이 많이 바뀌기 때문에 그러한 이야기들도 모두 리셋하는 게 맞다고 생각합니다. 조심스럽게 예상해 보면 수학Ⅱ 킬러 문항의 난이도는 다시 올라가지 않을까 싶은데요, 새롭게 개정되는 수능을 준비하는 여러분은 더 어렵게 준비하여 공부하시는 것이 좋지 않을까 생각해요!
이렇게 2021학년도 대학수학능력시험 수학 영역에 출제된 수학Ⅱ 주요 문항들을 살펴보았습니다. 조금이라도 여러분의 학습이 도움이 되어 자신감을 얻을 수 있는 계기가 되었기를 바라고, 이만 줄이겠습니다.
앞으로 MENTOR의 행보 기대해주시고!
좋아요와 팔로우는 저희에게 큰 힘이 된답니다ㅎㅎ
모두 새해 복 많이 받으세요~!
2022학년도 MENTOR 모의평가 시행 계획 : 바로가기
2021학년도 수능 수학Ⅰ : 바로가기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사실 180mm인거 아님?
-
올해도 그럴 수 있는거잖아…
-
181cm 1
ㅎㅎ
-
195 192 188 185 183 180 이런애들 있어서 170후반이 작아보임;;;
-
22킬러 있었던 작수가 94 아니었음? 본인 계산실수로 확1틀한 96인데 ㅋㅌㅌ님이...
-
흠흠
-
25 정지하던가 26 정지하던가 둘중 하나 본인이 대학 언제갈지만 생각하면 됨
-
차단차단차단 ~
-
군휴학신청 물어보려고 12
행정실에 전화하니 예과 1학년이요?? ㅇㅁㅇ?!! 이러시네 예1은 군휴학 신청 잘 안하나
-
키가너무작아 0
조금만더컷으면좋겠어
-
갑자기 관심이 생겼음
-
키 172.5면 5
평균아니에요? ㅈㅂ
-
키작남으로서 기만은 자제해줬으면 좋겠음뇨
-
또래중엔 막 큰거 모르겠는데 지허철이나 버스타면 대부분 본인보다 작음 절반이상은 정수리까지 보임
-
궁금
-
그게『국가』일지라도 ~구하고 싶은 사람이 있어서, 지금부터 전부 나의 적입니다~ 0
연재 개시 & 동시 완결
-
헌재 정족수 그러게 채웠어야지 ㅋㅋ
-
군수생이고 지금 학교는 경희대 기계입니다 약대 목표로 26수능까지 해보려는데 탐구를...
-
를 4년째 반복중 에휴
-
학고재수...? 2
학교 등록은 해놓고 학교안나가야겟다
-
물1 50 99 만표 69 만점자 1.6% 예상 48 97 47 95 46 95...
-
1)내년 경영 복수전공 2) 학회 노려보기 3)책 50권 이상 전문 독해 4)연돌이들한테 번따당하기
-
나치가 공산주의자들을 덮쳤을 때,나는 침묵했다.나는 공산주의자가 아니었기...
-
국어누구듣지 0
고민되네 피램+그때그때 부족한거 채우기 이렇게 갈까도 갠차는거같고
-
9등급은면했잖아...
-
백분위 99 확정임?
-
가짜계엄 “처단 호소인” 진짜 계엄 “진짜로 처단함“
-
걍.. ㄹㅇ 죽어야될거같음 재수때는 그래도 뭔가 막 울어도 괜찮고.. 우울하다...
-
애초에 민주당이 예전부터 의대증원 추진해왔는데 증원 인원을 조금 조정하고 공공의대...
-
신두창의 정상화 0
이건 빨리해야함
-
화 미 화1 생1 -> 화 기 생윤 문사 로 갈아타려는데요 삼수 1학기는...
-
님들 이거 몇등급임뇨? 32
저는 2컷임
-
전적대는 돌려보니까 모의지원자 100퍼에 확률 67퍼 최초합 예상하던데…
-
시대갤에서 봤는데 아니겠죠ㅜㅜㅜ
-
사탐런 질문 0
과탐을 하면 가산점을 3퍼나 5퍼 주는데도 사탐을 하는 이유가 무엇인가요? 한이나...
-
면접끝 7
내일 연락주신다고함. 면접땜에 화장도 빡시게했는데 합격좀요.. 열심히 일 할게요..
-
공석이햄이 자리 쌈싸먹고 있네
-
엑손과 인트론 0
나의 점수는 인트론
-
소외된 사탐러들... 사문 1컷 45인지 46인지만 알려달라고
-
Team07들아 3
기말고사 기간에 계엄령 선포에 큰 혼란에 빠졌지만..: 지금 상황이 말도 안되지만...
-
메가가 만점 백분위를 98인가로 잡았었는데 까보니까 94였어 다들 이 정도 각오는 해
-
전생테스트 1
왕 나오면 좋겠다...
-
뭔 각 부서 장관이랑 비서관을 혼자서 다해먹네 얼마나 유능한 사람인거냐… 엄청 열심히 사시는듯
-
2025학년도 수능 통계자료(Crux Table) 사전 공지입니다. [탐구 및...
-
그러네..
-
탄핵 좋빠가 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
탱크돌아다니는거 거짓뉴스라고 이악물고 개거품 문애들 뭐임? ㅋㅋㅋㅋㅋ 진짜로...
해설 개깔끔
글씨체랑, 가독성 좋은 풀이가 다 했다!
근데 상위권들은 보면 바로 이해할텐데
20번의 경우에는 fx 그래프만 그리지말고 fx를 0에서 x까지 적분한 그래프를 직접적으로 보여주면서 넓이의 차가 0보다 크고, 같고, 작을 때의 세 가지 케이스를 그래프적으로 표현해주면서 0보다 작은 쪽의 넓이가 더 크면 필연적으로 0에서 x까지 fx를 적분한 그래프는 x축과 추가로 두 점에서 뚫고 지나가니까 극점이 더 생긴다는 걸 시각적으로 보여주시면 중상위권 이하 학생들이 더 잘 이해할 것 같아요
근데 아무리봐도 완전 깔끔한 해설이네요
올해 수학 잘 부탁합니다
우왕... 정성 가득한 피드백 감사합니다!! 아무래도 이미 유명 강사님들 해설강의를 많이들 봤을 거 같아서 제가 실제로 시험장에서 풀었던 풀이대로 올려봤어요! 앞으로 더 친절한 풀이까지 같이 곁들여서 준비해보겠습니다!
중하위권 이하 학생들이 수과탐황 님 댓글 보고 더 잘 이해할 수 있을 것 같아요ㅎㅎ 감사합니다:)
헉,,30번문제가 22번급밖에 안된다니....2022는 외계인들이 치는시험인건가요>...?
시험 형태가 바뀌어서 위치상 22번일 뿐 이전 30번 역할을 한다고 생각하시면 돼요! 30번은 선택 과목(확통, 미적분, 기하) 킬러 문항이 출제된다고 보면 됩니다!