ebs 파이널 수리가 14번 ㄷ번 행렬좀 알려주세요...
영행렬이 아닌 행렬 A의 제곱은 0 .
ㄷ ) A=B제곱 을 만족하는 행렬 B는 존재하지 않는다.
해설에 B의 4제곱은 0 --> B의2제곱은 0 이라고 되어잇는데.....
어떻게 이렇게 생각하는거죠????
고수님들 도와주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기출 모의고사 복습 귀찮으신가요? 모플 한번 써보실래요? 0
안녕하세요 쉽고 빠른 모의고사 복습, 모플의 개발자 라쿠입니다. 모플은 쉽고 빠른...
-
그냥 이렇게 어설프게 한다고?? 꿍꿍이가 있을수도 있겠지만 그것보단 다른 이유가...
-
대체 어느정도의 베일에 쌓여있길래 계엄령을….
-
윤석열 얘기만 4시간 하다가 집오겠네
-
미안해 관심 좀 줄게
-
와....
-
이대로라면 국회에서 윤석열 대통령 탄핵 소추하고 헌재에서 의결하는건 시간문제인거...
-
ㅎㅎ
-
이과인데 고대를 온다면 안암공전의 언덕맛을 볼거에요
-
10시즌급 개노잼 같아보이는디
-
닉변 완 8
민족고대를 달라
-
근혜때마냥 탄핵집회 화력 안나와서 장작 던진건가
-
ㄷㄷ..
-
설치기원1일차 6
컷 10점 정도만 완화해주라ㅎㅎ..
-
대통령이 이정도까지 멍청할 수 있나 여기서 끝이라고..? 서울법대 검찰총장 한사람인데
-
님들이 대통령이면 안누름? ㅋㅋ
-
고대기원4일차 6
계엄메타 잠잠해진 틈을 타
-
음음 비상계엄도 서울대 합격을 막지 못해
-
개인적인의견인데 잠시조정은오더라도 결국1450원까지는찍을거같음...
-
엄 ㅋㅋ
-
9수했다는것도 구라인듯 한 20수는 해야될 머리인거같은데
-
와.. 0
ㄷㄷ
-
대선부터 총선까지 2번으로 도배했는데 살려주십시오
-
내가 282930을 맞출수있을까
-
너무 황당하네 4
너무 wwe같음 진짜 너무 각본같은데 이거 진짜 뭐임 의도를 모르겠음 진짜로
-
이쯤에서 지지정당 ㄱㄱ 11
.
-
국가비상사태라며
-
수학 고정백 만들면 돌아올게오, 아마 금방 올꺼임뇨
-
환율떡상해서개이득이네 라고밖에생각안했었음
-
대놓고 훈련용탄창 가져왔더만
-
예 작년에 있었던 일련의 사건으로 인해서 지문이 부드럽게 읽힌 친구들이 많을겁니다....
-
??
-
니니 말 들을걸 2
곱버스도 국장이규나
-
노베 입갤 되냐 1
여기 있으면 다 잘하는 사람인 거 아는데 눈치 없게 한 번 껴본다
-
.
-
그정도로 머가리가 텅텅 비었겠냐고
-
사죄의 의미로 손가락 한개씩 잘라라 이게 뭔 국제망신이냐 내일 장 열리면 재밌겠네ㅋㅋ
-
에타 근황 5
-
표지 예뻐서
-
문제 시 내릴 거긴 한데 어차피 퀄리티 개구려서 뭐.. 평가 좀요.
-
탄핵 2배는 못이기지 ㅋㅋㅋ
-
나 석열이 친구인데 숏쳤다고 전해 들음 ㅇㅇ
-
12.3 사태
-
종북세력 잡아들이고 다 좋다 이거야 근데 이게 계엄까지 갈 일이냐고 윤카야 쳐자빠져...
-
사실 0
계엄령 선포하고 국회에 승인받는 절차를 몰랐던 거 아닐까? ㅋㅋ
-
민주당이 계엄타령 할때 이 ㅁㅊ새끼들 헛소리하나 했는데 3
왜 헛소리가 아님?
B가 0인경우는 당연히 안되구 0이 아닌경우 B의 네제곱이 0이니깐 B는 역행렬이엄슴니당
따라서 케일리헤밀턴으로 B의제곱은 (a+d)B가 되구 B의 네제곱이 영이니깐 a+d 는 0이 되서 B의 제곱이 0이됩니당
89년생 ㅡㅡ;;; 저랑 동갑이시네요. 힘내시라는 의미에서 ㅠㅠ
B^n = O 에서 B가 역행렬이 존재하면 양변에 B역행렬을 곱해나가면 결국 B= O 가 되므로 B가 역행렬이 존재한다는 가정에서 모순됩니다.
따라서 B는 역행렬이 존재하지 않고, 따라서 B의 ad-bc 값이 0이 됩니다. 여기서 행렬 B에 대해 케일리 해밀턴 정리를 쓰면, B^2 - (a+d) B + (ad - bc)E = O 에서 ad-bc=0이므로
B^2 = (a+d)B 가 나오고, 양변에 B를 곱하면 B^3= (a+d)B^2 = (a+d)^2 B 따라서 B^n = (a+d)^(n-1) B
B^n = (a+d)^(n-1) B = O 에서, a+d= 0 이거나 B가 영행렬이라는 결론을 내릴 수 있는데, ① a+d가 0 일 때 B^2 =O ② B=O
이라는 결론이 나옵니다. 어쨌거나 B^ n = O 이면 B^2 = O 은 성립합니다. 이는 필요충분조건입니다.
고로 A = B^2 에서 A^2 = B^4 = O 인데 이는 B^4 = O 은 곧 B^2 = O 이므로 A^2 = B^4 = B^2 = O 인데 A=B^2 이라 했으므로 A= O 이라는 결론이 나옵니다.
그런데, 영행렬이 아닌 A라고 했으므로 존재하지 않습니다.
두분다 ㄳㄳ합니다!!....89생 화이팅 ㅠㅜ