[9.21] ★피니싱케치★
며칠 전 ★피니싱케치★에 작성했던 이해원모의고사에 대한 제가 쓴 해설글이 블라인드 처리되어서 안보이네요 ㅠ
제가 이해원모의고사 해설도 제일 먼저 써서 올렸고(17번만 틀려서 17번 빼고 모든 문항을 올렸었음.)
이해원님이 댓글도 달아주셨는데 ㅠ 넘 슬픕니다ㅠ
그 해설글 다시 올려달라하시는 분들이 쪽지 많이 보내주셔서 다시 작성해서 올리려다가.. 지금 너무 피곤해서 그렇게 다 쓰지는 못하구요
제가 중요하다고 생각했던 두 문제만 써볼께요.
------------------------------------------------나의 해설---------------------------------------------------------------
18번
f(x)=(x^2-1)(ax^2-1/2-a)+1 은 문제에 주어진 조건으로 도출된다.
그리고 x=1,x=-1 때 이계도함수가 0이어야 한다. 이 부분이 핵심이었다.
그러면 이 사실을 준 식에 대입해서 a를 구하고 적분계산 하면 답이 76이 나온다.
참고로 f(0)의 값은 알 필요도 없고 f`(0)=0이라는 것은 문제를 풀면서 생각하는 도중에 알게되겠지만 별로 필요없다.
f(x)의 정확한 식은 f(x)=(x^2-1)(1/8x^2-5/8)+1 이 나옴이 자명하며 우함수이다.
이계도함수를 가진다는 것은 f``(0)=0 이다 뿐이지 곡선의 요철이 변하는 것이 아니다.
곡선의 요철의 변화는 f``(0)=0이 되는 지점 좌 우 에서 반드시 부호가 바뀌어야 한다.
20번
ㄱ. 그림 그려보면 바로 케치 가능하지만 엄밀하게 걍 미분 함 쳐줘서 좌미와 우미값을 구해 비교한다. 우미 2 나오고 좌미 1 나온다.
미분을 쳐줄 수 있는 근거는 준 식 자체가 다항함수이기 때문이다.
ㄷ. 식만 보고도 케치 가능하여 미분조사식을 돌릴 필요는 없지만 그래도 엄밀하게 하고싶다면 좌미 우미 미분조사식을 돌려
미분계수를 구한다. 좌미 우미 둘다 2가 나온다. 그래서 ㄷ에 제시된 식은 양의 실수 전체의 집합에서 미분가능하다.
ㄴ. 이 문제는 ㄴ이 관건이었다.
절대값이 보이므로 e를 기준으로 절대값 식을 벗겨주면.
y=-x+2e와 y=e^2/x 의 교점 존재여부와 y=x와 y=e^2*lnx/x 의 교점 여부를 조사해야한다.
전자의 교점은 한개가 나온다. 그 이유는 x=e에서 접하기 때문이다. x=e에서 둘 다 미분계수가 -1이다. 따라서 접함이 자명하다.
후자의 교점은 한개가 나온다. 그 이유는 y=e^2*lnx/x의 그래프가 위로 볼록하기 때문이다.<---이 부분이 이 문제의 완전 핵심이었던 것 같다.
이걸 엄밀하게 보이려면 반드시 이계도함수 까지 그려서 해당된 범위안에서 이계도함수의 부호가 (-)가 됨이 보여져야 한다.
그럼 이제 정말 구해볼까? 앗! 진짜 부호가 (-)가 나온다.
따라서 위로볼록한 그래프이며 y=x를 뚫고 지나가는 그림이 그려지므로 교점이 한개가 나옴이 자명하다.
끝.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅅㅅ
-
냥대 967 1
이거 반도체 계약학과 되나요..? 연고대 낮공밖에 안되서 여기 가야겠는데..
-
나도 공스타있음 1
ㅎㅎ
-
원래 다른 국어 강사들보다 커리 수가 적게 느껴지는데 맞나요?
-
내년 정시때 8학군 일반고 초반이면 서연고 서성한공대나 메디컬 정시에 타격이 클까요?
-
약 1500년 전에 쓰인 고전의 한글 번역본 중 일부를 짜깁기해서 pdf파일을...
-
외대 자료 모으다가 보니까 22학번,24학번 대비 23학번때 입결이 급등한 어문계열...
-
나 말리지 마셈
-
최근 1년간 동아리 활동,축제 준비,반수,기능사 시험,운전면허,자격증...
-
궁금함
-
고 가 마즘 ㅇㅇ
-
어떤 여붕이 친구랑 경희대 가고싶다는 얘기 하는 거 보고 슬며시 핸드폰을 기울여서...
-
그냥 자야겠다 3
아
-
진학사 질문 2
매일 업뎃 되는 건 계속 1등이 나오는데, 업데이트 직후와 직전 2등이어서 보니까...
-
맞팔9 0
ㄱㄱ
-
문과 기준 아웃풋 차이 많이 클까요?
-
훈훈해지는 결말
-
안하네..
-
문붕이 설대식 2
398점 내신은 3점대라 bb 받을거같은데 ㅇㄷ까지 ㄱㄴ?
-
??
-
몇살같음? 저 아는 동년배분은 오늘 신분증 검사 당했다고 좋아하시더라구요
-
이거 합성아니고 반사광이 심해서 저렇게나왔어요. 눈 크게 뜨고 보시면 인간이 나올수도 있어요.
-
ㅂㄱㄴ인가?
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
....
-
낮에 혈당 팍 올렸는데 걍 굶고 자야겠지?
-
하지만 세후 연봉 8800만원 정도까지는 행복이 돈에 비례한다는 연구결과가 이미...
-
2026 명불허전이랑 같이 메인에 있길래 주문했는데 보니까 2025 버전인데 이거...
-
수시 추천좀요 0
님들 진짜 아웃풋만 보고 선택좀
-
VR챗에서남자꼬실려고연습해본적있음 아직도걔는내가남자인거모를걸
-
2학기휴학안된다 알고있는데 등록금 걍 내고 반수하셨나요? 전 1학기부터...
-
사탐/과탐선택 진지하게 고민중입니다.. 조언부탁드립니다 15
안녕하세요 저는 내년 수능 준비하고 있는 n수생입니다. 이전...
-
한양대 진학사 모의지원으로 6칸~4칸 지원자들 계산기 돌려서 변표발표 후 성적 살짝...
-
나를 괴롭게하네 허허
-
제 성적에 변표 적용하면 어떤 영향을 받나요..? 발표 전후로 10점정도 오르긴...
-
군수 결산 2
언기영화1물2 23수능 (입대 전) 96 91 4 94 76 24수능 (군수...
-
오지훈 이훈식 6
대성패스를 끊은 예비 고3입니다 노베이고 개념을 시작하려고 하는데 이훈식 개념...
-
제 의견 입니다. (1) (연대/고대 등에 해당) 정량 평가의 불가능 학교마다...
-
아직 진학사 같은 거 다 변동중이라서 최종을 모르겠어서요. 저 정도면 보통 어느...
-
한양대 진짜 6
사과해요 나한테!!!!
-
욕심을 그냥 좀 버려볼까 욕심이 과하니 정신이 산만해지네...
-
그래서 돈없다고 거절함 근데 슬프게도 핑계가 아닌 팩트임... 진짜돈이없어ㅅㅂ ㅠㅠ
-
그게나에요
-
그냥 뼛속까지 문과생.. 일단 ebsi로 싹다 밀엇는데 메가스터디나 대성 진짜...
-
그깟아무가치없는데이터를돈주고사는 아무의미없는행동하지마세요...
-
국어 3컷에 나형 100점 받고 사탐 1 1 받고 건대 떨어져봐야 정신을 차리지..
-
커뮤에 너무 절여져 버렸다 그래도 현실 말투는 이 정도까진 아닌데
-
ㅏㅏㅏㅏㅏㅏㅏㅏ 4
ㅇㅇㅇㅇㅇㅇㅇㅇ
오 !
예~
사!
유리?
18번 어떻게 푸셨어용 !?
저는 , 20 ,21 은 해설지하고 똑같이 풀었공 ,
18번은 h(X) 이계도함수 존재이므로 미분가능 ,
그러면 , h'(x) limx->1+ : -1 ,, h'(x) limx ->-1- : 1 이렇게 나오고 , f ' (x) 도 limx -> 1 - = -1 , limx -> -1+ = 1 & f(x) 는 4차함수 ,
따라서 [-1,1]에서 f(x) 개형을 대략적으로 2가지 추측가능한데 , 위로볼록 , 그리고 m 모양
위로 볼록 일경우 (이차함수모양) 도함수가 일차함수인데 , 이경우 도함수에서 미분 불가이므로 이계도함수 조건에 모순 , 따라서 f(x)개형은 m 모양
그리고 , h ' (x) 의 두 점 (-1,1) (1,-1) 을 볼 때 , f ' (x) 가 삼차함수인데 , f ''(x) limx->-1+ = 0 , limx->1- = 0 을 만족해야므로
f ' (x) 는 (-1,1 ) , (1,-1) 을 극점으로 갖는 삼차함수가 되고 이리이리해서 답을 구했는디 과정이 맞는지 모르것어용 ..
나랑 완전 똑같음 ㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ ㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋ ㅋㅋ ㅋ ㅋ ㅋ
good , ㅋㅋㅋ
good ^o^
으아닝~~수학고수님 ysESP님이랑 풀이가 똑같았다니 ㅋㅋㅋ
나 지금 넘 기분 좋아서 졸렸던거 지금 없어졌어용~~~ㅠ ㅋㅋ
우앙..나 실력 마니 늘었나보당ㅋㅋㅋㅋ
OTL ... 저 수학 몬해요 .. ㅠㅠ 모평 6 , 9 둘다 말림 ..ㅠㅠ
저번에 완전 어려운 수학문제 막 다 푸시고 레잘하시던데요~~~*.*
포스가 탱구쌤 급으로 느껴졌었쑴..+.+
문제를 풀게 될 때 대략적으로가 아니라 엄밀하게 딱!!! 두가지 모양만 가능한데!!
그 것이 바로 단순하게 U 거꾸로 해논 모양 ,그리고 m모양 이렇게 두 가지만 후보군이 나와요.
그래서 자연스럽게 시험지에 두가지를 점선으로 그려주고 문제를 시작했어요!
첫째! U를 거꾸로 해놓은 모양일 경우---> 이계도함수가 안나옴. 문제 조건에 위배.
둘째! m 모양일 경우---> 이계도함수가 나온다. 문제 조건에 만족.
여기서 첫째 것을 버리고 둘째 것을 취한다.
저는 이 문제 풀면서
이해원님이 두개의 후보군이 나오는데...
여기 두개 후보군 중에서 하나를 꼭 버려야 한다는 것을 케치할 수 있니??
이렇게 물어보는게 출제자의 의도가 아닌가 생각되었어용~~
굳좝~
생귤~ ^^
올 ㅋ
앗 ㅋㅋ 탱구쌤~~ 저 풀이 괜찮나요? ㅋㅋㅋ ㅋㅋ
네 잘푸럿어요 ㅋ 근데 ㄴ 보기 저렇게 나누지말고 그래프의 관점으로 풀면 더 간단햇을거 가타요 ㅋㅋ
ㅋㅋ넹넹~ 그렇게 연구해볼께요쌤~ㅋㅋㅋ ^^