고3 학교내신문제(수학) 논란이 있습니다. 해결좀해주세요..
문제는 쉬운데 선지가 이상합니다
1번과 4번은 같은것이 아닌가요?
시험칠 때 솔직히 답은 바로 나왔는데 선지가 이상해서 ㅡㅡ
학교 선생님은 항이 다르다고 하시면서(??) 답이 1번이라고 주장하시는데
(사실 저도 첨에 1번 찍었다가 뒤에 4번이 너무 없길래 4번찍은..ㄷㄷ)
왜 1번과 4번이 다른지 이해가 안갑니다. 해결좀 해주세요..
이 문제로 자칫하면 1,2등급이 갈릴 수 있습니다 ㅠㅠㅠㅠ 도와주세요ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사실 플라톤은 1
단지 이세계물을 좋아하는 쇼타콘 아저씨 아니었을까
-
점심 ㅇㅈ 3
맛점하세요
-
요즘 퀀텀쪽이 미친듯이 올라가는 중인데 이제 시작인가 지금 송도캠에도...
-
어 사문은 4년연속 만백 100예정이야 출제진이 그저 goat 생윤 사문 한지 세지...
-
용과의 일기토를 뜰수 있게 됐다 레이드팟 구함 너만 오면 고 안 와도 나 혼자 고
-
수험표 말고 수능샤프로 해도 괜찮을듯 윙깅님은 매년 할인...?!
-
탐구 가채 1번문제 4로 풀었는데 3이라 적혀있어서 정신승리도 해보고 집에있는...
-
미루기 미루기 미루기 흐흐흐
-
아침이니 추워요 2
추으니약간울적해지네요
-
진학사 1
지금은 작년 컷 기준이면 성적표 나오고는 모의지원자 성적 기준임??
-
내 선택과목만 지금 해두긴 했는데 파일 넣어서 저렇게 선택하면 바로 문제지 정답표...
-
바쿠레츠 바쿠레츠
-
연세대 기계과 폭로 21
나만 볼 순 없음뇨
-
옯스타도 안 만들고 바로 오르비에서 사라질 것임뇨
-
극도로 가고십꾸나
-
이왕이면 가장 내신틱하고 어려운걸로...
-
경주웣드갈까 2
심심하네
-
고대기원2일차 6
이틀 뒤에 닉변 가능하니 고연대제발로 바꿀게요 제발가게해주셈뇨
-
흠..
-
객관적으로 1등급 컷 몇점 예상하시나요?
-
2달 지나서 또 걸려있는게 아주 유링게슝하네요.
-
각자 본인이 생각하는 명문대 마지노선은 어디임뇨
-
'이세돌' 웹툰 굿즈·단행본 펀딩 88억원 모집…역대 최고 8
카카오엔터테인먼트는 버추얼 아이돌 '이세계아이돌(이세돌)'을 소재로 한 웹툰...
-
체중이 좀 쪘으면 조캣음뇨.. 내년엔 운동해서 근육빵빵 만들거임뇨..
-
낙지기준 내앞에 과탐러들 개많음
-
호르몬에 영향주고 키 큰다는것도 마케팅 이였다는데
-
제발 가채점 점수 그대로만 나오게 해 주세요 진짜 착하게 살게요
-
성대 반시공같이 바로 칼취업되는거라고 보면되나요??
-
미적만 들어볼건데 언제쯤 올라오나요???
-
그럼 소원이 없겟슴뇨..
-
삼수 성공해서 원하는 대학 컴공 가고 내가 하고 싶었던 공부 다 할거임
-
나도 이세돌 4
굿즈사고싶다 . . 나중에 이세페 또 열리면 목숨걸고 가야지
-
우리 옯창들은 금요일에 수능 성적표가 나오면 다들 인증하고 싶어서 안달 날게 뻔하다...
-
부럽네요... 나도 로스쿨 보내 줘
-
반갑습니다 0
On
-
대학가서놀고싶다 4
네
-
1년간 모은 결과물 16
-
감독관님이 저보다 더 떠시던데... 전날 일찍 잠들어서 컨디션도 좋았고 고사장도...
-
만백100이잘나오는과목을선택해야댐
-
꽌다 열받뇨 2
아니 합격증이랑 신분증으로 인증했더니 학생증으로 인증하라고 뜨네 그럴거면...
-
현역 첫 수능인데 긴장 없이 친게 지금도 의문스러움 실모 풀면 수학은...
-
ㅈㄱㄴ 제2외국어 5등급 좀 그래서 빼려고하는디 불가능? 포토샵 해도 되려나
-
2년전에 미적 4~5등급따리였는데 한완수->뉴런(시냅스X)+한완기+교사경->각종...
-
진학사는 8칸 뜨긴해요 국어땜에 인문계열은 불리할거같고 인원많이뽑는 경영학과가...
-
국수탐탐 모두 1컷정도 가능?
-
지구 1, 2컷 1
대성, 시대, 종로는 1컷을 42 이하로, 2컷을 38 이하로 내리도록...!
-
아직 가채점 기준이긴 하지만, 나름 3년 연속 4, 5등급 -> 1등급 제자들이...
-
이게 뭔 냄새지
-
뻥임뇨
같은 항인것 같은데요??
ㅋㅋ 걍 n=1넣고 n=2넣고 n=3넣고 다 넣어보면 다 똑같은데 왜 안되냐고 따져보세요 ㅋㅋ
http://imgur.com/F5PMN
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2+-+%281-%28-1%29%5E%28n%29%29%2F2
일단 기말고사 공부에 집중하고 금욜날 당장 따지러가야겠습니다 감사합니다 ㅠㅠ
문제 잘못 낸 걸로 인정하면 시말서도 써야하고 교장,감한테 눈치도 보이고 해서 쉽게 인정하지 않을 겁니다. 끝까지 밀어붙이세요
제가 아는데 그런 류의 선생 특징이 절대 자기 잘못 인정안합니다.
교장실이나 교무실까지 가서 따져야하는 상황이 올수도 있습니다.
그래야만 인정하는 종자들 입니다.
꼭 승리 하십시오. 건승을 빕니다.
상대를 이기는 좋은 방법 중 하나는, 압도적인 힘으로 밀어붙이는 것입니다. 도저히 반박할 수 없는 논리적인 힘으로 압도해버리시면 됩니다.
대충 이렇게 argue할 수 있겠네요.
수열은 자연수를 정의역으로 갖는 함수로 정의됩니다. (이는 각 수학교과서에서도 확인하실 수 있습니다.) 그리고 함수는 수학적으로
(1) 정의역 X
(2) 공역 Y
(3) 함수 대응규칙 F. 좀 더 구체적이고 형식적으로 설명하자면, X와 Y의 Cartesian product X×Y = {(x, y) | x∈X, y∈Y} 의 특수한 부분집합 F를 가리키며, 이때 F는 다음 두 조건을 만족해야 한다.
(i) 임의의 x∈X 에 대하여, 어떤 y∈Y 가 존재하여, (x, y)∈F 를 만족한다. (즉, 정의역의 모든 원소마다 함수값이 있다.)
(ii) 각각의 x∈X 에 대하여, 만약 (x, y)∈F 이고 (x, z)∈F 이면, y = z 이다. (즉, 각각의 정의역의 원소마다 오직 하나의 함수값만 대응된다.)
이렇게 세 요소의 순서쌍 (X, Y, F)로 정의됩니다. 그리고 이때 (x, y)∈F 라는 관계를 y = F(x) 로 적습니다.
따라서 집합의 상등으로부터 함수의 상등이 자연스럽게 따라나오며, 이 내용은
1. 정의역이 일치하고
2. 공역이 일치하며
3. 정의역의 각 점마다 함수값이 같으면
⇒ 두 함수는 같다.
라는 내용으로 요약할 수 있습니다. 물론 함수의 엄밀한 정의는 모르신다손 쳐도, 위 함수의 상등 내용 자체는 이미 교과과정상 배웠으므로 충분히 근거로 사용할 수 있지요.
이 모든 내용들을 종합하면, 함수의 상등 조건에 의하여 각 n의 값마다 a(n) = b(n)을 만족하는 두 실수열(공역이 실수인 수열) {a(n)}, {b(n)} 은 정의로부터 같은 수열이 됨을 알 수 있습니다.
즉, 수열은 그 수열을 정의하는 식에 의존하는 것이 아니라, 그 식의 각 지점에서의 값에 의존합니다. 따라서
a(n) = {1 - (-1)ⁿ}/2
b(n) = {(-1)ⁿ+1 + 1}/2
c(n) = sin²(πn/2)
등은 모두 동일한 수열입니다.
게다가 n이 정수라는 조건만 추가하면, 물량공급 님의 포스팅에서 확인할 수 있듯이, 정수지수의 정의로부터
{1 - (-1)ⁿ}/2 = {1 + (-1)ⁿ+1}/2
임이 따라나옵니다. 때문에 사실상 주어진 식은 함수가 아닌 식으로써도 동등하다고 말할 수 있습니다. 결론적으로 두 선지는 '근본적으로' 같은 선지입니다.
ㅋㅋㅋㅋ 흔한 선생 관광보내기.txtㅋㅋㅋ 이거 그래도 복붙해서 프린트하고 보여주세요 ㅋㅋ 진짜 쩌시겠네요
으앜ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ
감사합니다!! 이렇게 많은 댓글이 달릴 줄은 몰랐네여.. ㅋㅋ 내일 시험끝나는데 이 자료들 다 정리해서 금욜날 선생님한테 보여줘서 꼭 1등급 받아내고야 말겠습니다ㅋㅋ 감사합니다!!