2월 20일(월)
게시글 주소: https://orbi.kr/0002791192
*단원: 기벡 공간도형, 평면의 방정식(이과 전용)
*예상정답률: 30%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사실 환급때문에 그냥 ebs 답 보고 넣음 ㅎ
-
주변 학원들 전화해보니 다 마감됐다고해서 어쩔수없이 집에서보거나 기차타고...
-
언급이 아에 없네
-
아오 환율시치 3
아.
-
들어올때마다 바뀌어 있음;,
-
확통 미적 기하
-
국어 고정1이면 7
정법 지금 시작해도 만점 나와요?사탐에 감이 아예 없음 누가 국어 잘하면 정법하라길래...
-
국어 양 1
국어에서 양을 늘리라는게 양치기를 하라는건가요? 그럼 기출가지고만 양치길ㄹ...
-
1. 집근처 잇올 70만원정도 화장실 맘대로 못가는게 좀 에바같음.. 6.9모 따로...
-
후반 회차는 개어려워 ㅠ
-
[유튜브 23만뷰 돌파!!!] 수능 영어 풀어주는 AI 프로그램 개발? [노병훈 영어강사, Roy] 수능 CDI 풀이법 프로그램, 로블정음 영어독해법 0
이 칼럼으로 영어로 고민하고 힘들어하는, 많은 학생분들에게 새로운 인사이트와 희망을...
-
칼럼 뭐쓰지 0
소년애 지문 뜯어보기 이런거 할까 아님 강화약화의 일반적해법이나
-
국어 자습용ㅊㅊ 0
새기분 듣는중인데ㅜ 학교가는날엔 인강듣기 좀 버겁기도하고 혼자서 생각하고 풀만한...
-
정승제. 개념의 신. 공수2. 중 명제파트만. 보려고 하는데요 (선행용으로) 문제집...
-
진짜 마음이 싱숭생숭하네.... 아효......
-
22도 23도네 2
다다음주면 30도될듯
-
늦게 찾아온 만큼.... 3월말에 잠깐 여름 찍먹하고 다시 겨울이었다가 이제야 계절이 정상화된 느낌
-
버스로는 25분 정도 걸리는 거리인데 정류장이 제 집에서 10분 정도 걸리는 거리에...
-
.
-
13 14 21 28 29 계속 틀리는데 뭘 해야좋을까요 21 29은 그렇다 처도...
-
정답률 파악을 위해 문항마다 투표 올립니다. +국어 해설 작성에 능한 야인을 찾고자...
-
시발 존나 싼티나잖아~
-
”수학 익힘책“
-
수능대비 찐입문n제라고 봐도 손색이 없음 개념바로 배운 상태에서 유형+직관적인...
-
1. 사설모나 기출 등을 풀어본다. 2. 끌리는 포인트를 찾는다. 3. 그...
-
우리가 처음만났던 그때의 향기 그대로~~
-
그냥 공부를 안할 가능성이 높음 하루에 샤프를 드는 빈도가 적을지도
-
남정네들이랑 꽃 잠깐 보고 다시 들어와서 우렀어
-
참가비 걷기
-
일단 말도 안되는 굇수들이 수학 문제를 촤라락 풀고 자랑질을 할 것 이다 이때 너는...
-
완벽하게 풀고 설명할 수 있다? 꽉 찬 2등급은 나올듯
-
상품 더 뿌려야겠네요 12
의문의 후원릴레이로 인해 많은 참가 부탁드립니다 받은 덕코는 다 쓰는 게 도리겠죠
-
뭐 형광펜 쳐라 밑줄 쳐라 적어라 이런걸 딱 어디부터 어디까지 쳐라 아니면 어디다...
-
육진방언 글로 3만 덕 넘게 벎 캬캬
-
왤케 웃기지ㅋㅋㅋㅋ
-
2025학년도 한림대 입시결과(수시, 정시_의학과 포함) 0
2025학년도 한림대 입시결과(수시, 정시_의.. : 네이버블로그
-
모의고사는 어케 되는거임? 연기?
-
젖지 대머리에 빠져서 할수가없어
-
1. 투자할 돈을 모은다. 2. 1을 절대 주식에 넣지 않는다. 3. 2를 반드시...
-
점심 메뉴 조합 추천좀 16
이번달 배달 안먹기 챌린지중
-
헛소리하길래 뒤질래?라고 했더니 이러는데 사귈까요?ㅇㅇ
-
흑흑
-
사탐런 경제 선택하려는데요. 제가 금머갈은 아니라서 막 효율적인 풀이를 잘하지는...
-
911이후 제일 심각한 수준으로 내리는데 이게 끝이 아닐것같음
-
토레타 사긴 아까운디 포카만 따로 구해도 가격차이 크게안날듯
-
의대 투표 1
서연카성울고 의대 정시 일반전형 목표로 물2화2는 어떤가요? 다른 건 언매,미적입니다.
-
오늘할꺼 0
피램 오답 피램 독문1일치 국어 주간지 영어 주간지 2일치
-
책왔다 7
국어 연계랑 수학1
혹시 9 - 4*(루트2)인가여?
아닙니다ㅜ 자연수가 나올겁니다...
혹시 18인가여? ㅠㅠ
네 맞아요ㅎㅎ
근데 첫번째 풀이에서 제 생각이
평면과 원기둥이 만나는 한점이
좌표계를 도입하면 (0,1,h)인데
그걸 평면의 방정식에 대입하면
h가 2*(루트2)-1이 나오던데요..
제 풀이 어디가 틀렸던거였는지좀 알려주세요~
음... x+y+z=2루트2와 원기둥이 만나는 점의 자취는 타원인데;;;
아마 C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점의 좌표를 말씀하신 듯 합니다
그 점의 좌표를 (0,1,h)로 놓으셨는데 문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
한 편, C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나오는데
높이는 그것보다는 커야하므로 결과적으로 보아도 2루트2-1을 나오도록 하는,
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점은 (0, 1, h)로 놓을 수 없을 것입니다
18인가요?
정답입니다ㅎㅎ
18나왔어요 원기둥윗면이랑 저 방정식이랑 만나는 각도를구해서 닮음사용해서 높이구하니까 3루트2가나오더라구요 이렇게하는게맞나? ㅠ 기벡이기억이잘안나네여
네ㅎㅎ 그렇게 푸시는거 맞아요ㅎㅎ 정답ㅎㅎ
18요 ㅋㅋ x^2 + y^2 = 1과 z = 2루트2 -(x+y)에서 코시슈바르츠로 x+y의 최소값 찾아서 풀었네요 혹은 직선 x + y =2루트2에서 원점까지의 거리가 2이므로 거기에 반지름1 더하면 3, 여기서 두평면사이의 각도를 t라하면 tant = h/3인데 cost = 1/루트3이라서 tant = 루트2, 즉 h = 3루트2 이런식으로도 접근 가능하네요 ㅋㅋ
정답입니다ㅎㅎ 제가 만들었는데도 코시슈바르츠는 생각도 못했네요 발상이ㄷㄷ
18?
네 정답ㅎㅎ
8인가요?
아닙니다ㅜ
1 8 ?! ㅠ
정답ㅋㅋ
32인가요? 으아 틀린것같다ㅠㅠㅠ
오답입니다ㅜ
풀이를 알 수 있을까요? ㅠㅠ
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용해서 그 다음부터는 답을 구하실 수 있을 것 같네요...
18?? 또 틀린것 같긴 하지만 ㅠ
우왕 여기는 진짜 어려운듯..
이 문제들은 심심해서 만드시는거에여?ㄷㄷ
정답 18 맞아요ㅎㅎ
수학문제 만드는거는 취미라서 하고 있습니다ㅎㅎ
18 맞나요?
정답입니다ㅎㅎ
이거 어떻게 푸는게 정석인가요?
평면사이각 구하고, (0,0,0)하고 x+y+z=2루트2 거리구해서.. 코시컨트 탄젠트때려서 높이 구했는데요
쫌 이상하게 푼거같아서..
네 그렇게 푸는걸 의도한거 맞아요ㅎㅎ
법선벡터가 (1,1,1)이라
타원의 장축을 품는 직선이 점 A(2루트2/3,2루트2/3,2루트2/3)를 지나고, 선분 OA에 수직이며, 정사영내릴시 원 C의 지름을 포함하는 직선 l을 잡으니, 그 직선이 (0,0,2루트2)를 지난도록 계산되더라구여.
이때 장축의 양끝의 x, y 좌표는
(1/루트2, 1/루트2), (-1/루트2,-1/루트2) 로 추정되어 h^2=18이 나왔는데,
풀이와 정답은 어떻게 되나여??
ㅎㄷㄷ 좌표를 직접 구하셨네요 정답 18맞구요...
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 역시 3루트2가 나오구요...
32인가요/
아닙니다ㅜ
18 ~
정답ㅋㅋ
18
정답ㅊㅊ
혹시 18인가여??
네 정답ㅋㅋ
18?
정답이에요ㅋㅋ
18 아닙니까??
정답입니다ㅋㅋ
아무리 머리 굴려도 못풀겟는데.. 풀이나 힌트 없나요? 평면의 방정식에 2루트2가 힌트?
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 답을 찾으실 수 있을 것 같아요!
아 18인가요? ㅋㅋ 아 ... 피타고라스 이용해서 원기둥 높이의 일부분이 2루트2인것까지만 생각햇네요 ㄷㄷ
네 맞히셨어요ㅋㅋ
이런거 자작하시는 건지 아니면 어디서 갖고오나요? 자작하시는 거라면 문제 정말 잘만드시네요...
아 그리고 C의 중심을 0,0,0으로 잡으면 C의 오른쪽 점을 0,1,0으로 잡고하면 원기둥의 높이가 2루트2-1 나오던데...
이건 뭐죠 ㄷㄷ
감사합니다ㅎㅎ 직접 만드는거에요ㅎㅎ 보통 기출문제를 참고하여 그를 분석하면 풀 수 있도록 가공하구요
소재는 가끔 교과서에서 따와서 제 입맛에 맞게 원본과 전혀 다른 문제로 만들 때도 있는데
이 문제가 그에 해당합니다... 원기둥을 평면으로 자른다는 설정만 가져와서 제가 만들고 싶은 문제를 만든것이구요...
그리고 좌표를 설정하는 부분도 위에서 한 분이 질문하셨습니다
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 점의 좌표를 (0,1,h)로 놓으신 셈인데,
문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
음... (-2분의루트2, -2분의루트2, h)평면에 대입하면 되는거 맞죠?/ 그러면 18인가??
아하... 좌표를 직접 구하셨네요 중간에 그렇게 푸신 분도 계셨고 답도 맞습니다ㅎㅎ
가장 많은 분들이 풀이하신 방법은
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
아 ㅋㅋ 그런방법은 생각도 못했느데 ㅎㅎ
답 32 맞나요? 맞다면 의도하신 풀이는 뭔가요?
아닙니다ㅜㅜ
아 ㅋㅋ (-루트2,-루트2,~)점이 아니라 (-2분의 루트2,-2분의 루트2,~)점에서 만나는 거네요. 수능 끝났다고 계산실수해되네.. 답 18맞나요? 아니면 당황스러운데...
정답 맞아요ㅎㅎ 님 바로 위에 분도 좌표 설정하시고 푸셔서 맞히셨어요ㅎㅎ
제가 의도했던 풀이는
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
흠냐 그런 풀이도 있군요 ㅎㅎ 재밌네요 문제 제공 감사드려요~~ 그럼 안녕히 주무시길 ㅎㅎ
8
18인가요??...ㅠ 오늘인기글에올라와있길러 처음뵙니닿ㅎ
18
답: 열여덟 아닌가요?? 답은 어디있나요?