모세혈관은 기관일까? 아니면 조직일까?
안녕하세요. ‘줄거리가 있는 생명과학’ 저자입니다.
얼마 전에 독자분께서 한 가지 의문점을 제시하셔서 다른 분들과 공유하고자 글을 씁니다.
독자분의 의문점은 아래와 같습니다.
“인강 강사님이 모세혈관은 기관이라고 하셨는데 이 책에서는 모세혈관은 조직이라고 말하고 있네요. 어떻게 해야 하나요?”
결론부터 말씀드리자면 ‘모세혈관은 조직인가? 아니면 기관인가?’라는 지문은 시험에 나올 수 없습니다. 적어도 출제자가 복수정답을 각오하지 않는 이상 이 둘을 구분하는 문제는 내지 못할 것입니다.
시험에 나오는 것만 공부하고 싶으며 구체적인 설명이 필요 없다고 생각하는 학생들은 더 이상 이 글을 볼 필요가 없습니다. 그러나 분명히 애매한 것을 애매한 대로 놔두지 못하는 성격을 가진 학생들에게, 이글은 분명히 도움이 될 것입니다.
사실 이 문제는 우리나라뿐만 아니라 세계적으로 학생들이 골치아파하는 부분이기도 합니다.
우선 이러한 문제가 왜 발생하는지부터 살펴보겠습니다.
혈관은 동맥, 정맥, 모세혈관으로 이루어집니다. 그런대 동맥과 정맥은 ‘기관’으로 구분됩니다. 여기서 우리는 다음과 같은 질문을 해볼 수 있습니다.
“모세혈관은 동맥 그리고 정맥과 연결되어 있다. 그렇다면 모세혈관 역시 기관일까?”
기관과 직접적으로 연결되어 있으므로 당연히 기관이라고 생각하실지 모르겠습니다.
그러나 문제는 ‘기관’이라는 단어의 정의입니다. 기관은 ‘여러 가지 조직이 모여 하나의 공통된 기능을 하는 단위’정도로 정의됩니다. 여기서 중요한 점은 “여러 가지 조직이 모였다.”입니다. 즉, 두 가지 이상의 조직이 모여야 기관이 된다는 의미입니다. 그런대 모세혈관은 한 가지 조직으로만 이루어져 있습니다. 여기서 모순이 발생합니다.
어떤 사람들은 “모세혈관은 혈액을 포함하고 있으므로 두 가지 이상의 조직으로 보아야 한다.”고 말합니다. 그런데 문제는 백혈구가 온몸에 퍼져있다는 것입니다. 따라서 이러한 사람들의 논리에도 모순점이 있습니다.
어떤 사람들은 생물학 교제 등에 서술된 “혈관은 기관에 해당한다.”라는 지문을 따와서 논박하기도 합니다. 그런데 여전히 문제가 있습니다.
예를 들어 이러한 주장은 다음과 같은 삼단논법으로 축약해볼 수 있습니다.
전제1 : 모세혈관은 혈관이다.
전제2 : 혈관은 기관이다.
결론 : 모세혈관은 기관이다.
그런데 이 논리는 다음과 같은 논리와 유사하게 들립니다.
전제1 : 사자의 똥구멍은 사자 몸의 일부이다.
전제2 : 사자는 온몸이 무기이다.
결론 : 사자의 똥구멍은 무기이다.
여기서 더욱 헷갈리게 하는 것은 유럽의 사설기관 등에서 실시하는 시험에서는 ‘모세혈관은 조직이다.’라고 못 막아서 이야기 하는 것입니다. 선생들도 그렇게 가르치는 모양입니다.
도대체 뭐가 옳은 것일까요?
역사적으로 보았을 때, 기관과 조직의 구분방법은 너무나 명확합니다. 왜냐하면 이는 해부학과 조직학을 구분하는 기준과 정확히 일치하기 때문입니다. (교재의 74페이지 참조)
식물의 조직계는 왜 기관이 아닐까요? 기관의 정의로만 따져봤을 때에는 식물의 조직계는 기관으로 불려야 합당합니다. 예컨대 관다발조직계는 물관조직과 체관조직 두 가지로 구성되며, 분명한 하나의 기능을 수행하고 있으므로 “기관”이라고 불려도 크게 무리가 없습니다. 그럼에도 불구하고 기관이라고 부르지 않고 조직계라고 부른 이유는 역사적인 맥락을 이해해야만 알 수 있습니다. (사실 역사적인 맥락 없이도 너무나 간단한 구분기준이 있으며, 독자여러분은 이미 알고 계실 것입니다.)
사실 제가 책에서 조직과 기관을 구분하는 특별한 기준을 제시한 것은 전체적인 맥락에 일관성을 위해서였습니다. 만약 제가 제시한 기준을 없애고 생명과학1의 내용들을 보면 전체적으로 너무 중구난방이라 학생들에게 생명과학이 통으로 암기해야하는 과목으로 보이게 될 것입니다.
분명히 인강 강사님께서 말씀하시는 주장에는 분명한 근거가 있을 거라고 추측합니다. 그러나 저는 인강 강사님의 주장이 옳더라도 그분이 말씀하시는 모세혈관은 조직학 전공자가 말하는 모세혈관이 아니라 해부학 전공자가 말하는 모세혈관일 것이라고 확신합니다. 큰 그림에서 그렇게 될 수밖에 없습니다. (두 용어는 지칭하는 바가 다를 것입니다. 책에서 ‘뼈’를 예로 든 것과 유사합니다.)
직관적인 이해를 위해 두 개의 사진을 비교해봅니다.
-해부학자가 생각하는 모세혈관-
-조직학자가 생각하는 모세혈관-
여기까지 이해한 분들이라면 모세혈관 문제가 왜 시험에 나올 수 없는지 알게 되셨을 것입니다. (다행히 원래 질문자께서는 쪽지를 통해 이야기한 결과 금방 이해를 하셨습니다.) 사실 글을 쓰면서도 답답한 부분이 좀 많은데 이 부분에 관해서는 인강 강사님들끼리도 서로 의견이 다르다는 글을 본적이 있습니다. 아마 학교 선생님이나 대학교 교수님들도 마찬가지일 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
본인 ,, ,, 재밌게 봤어요.
-
화1 만점표점<<<생윤 2틀표점
-
한국노래 힌트 -띵곡 -제목 약간 십덕같음 -긴지 짧은지는 안알려줌
-
빈순삽 푸는 스타일 두분 다 비슷하신요? 작년 파데 컬미 주간지있어서 V올인원만...
-
는 성적표 발부 2일전? 하루전에 나오는건가요?
-
동덕여대 논술을 2
동덕여고에서도 보고 세화까지도 가서 본다고 하네 ㄷㄷ 어지간히 난장판인가벼..
-
물갈이가 안 돼 ㅉ
-
10월학평 수학 6
"전국 유일1등" 캬....
-
수능 성적 발표 입갤
-
아파서 집 가는게 왜 이렇게 억울하지 잘하고 싶고 열심히 하자고 마음 먹고...
-
미적:아니 나도 잡혔어 (1컷88에서 더 상승예상)
-
내 가슴이 한번더를 외치고있어 이건 해야겠지?
-
그런데 보고오니 생지 컷이 40초중반인것이에요. . . 보자마자 눈물이 났어요
-
게임 속으로 들어가고 싶어
-
아침에 7시 10분 고사장 도착 목표로 생각하고 집에서 6시 45분에 나옴 엄마가...
-
넓죽넓죽은 [넙쭝넙쭉]으로 발음이 된다고 하는데 된소리 되기 후 자음군단순화 된...
-
대대상근 등장 20
그래도 출퇴근이잖아 한잔해~
-
콱) 헐 개못해 2
소름돋아
-
이런 통계가 있고 저런 통계가 있어서 이렇게 저렇게 하면 92 입니다! <<<욕...
-
독하다 독해
-
집 가서 아예 쉴 건 아니고 국어 몇지문이랑 수학 뭐뭐 할거는 가져가서 쉬면서 할...
-
평소에 정시 진짜 잘하는걸로 이름날리거나 수시로 10등권에 있던 애들 : 1틀 2틀...
-
이모네 댁 가서 5일동안 뭐한다고 쓸까요 어떻게든 꽉꽉 채워야 하는데 ㅠㅠ
-
춥네 12
약속 파토내고 싶다 라고할뻔
-
확통만 나오는건가요..? 애초에 준비를 안해서 아직도 갈까 말까 고민중..
-
미기확 다보는학굔데 기하확통 수능끝나고부터 공부해서 내일 수리논술보러간다하면 붙을확률이 있긴할까?
-
사람들의 행복한 미소 넘쳐나요~ this is magic swing
-
기하가 일등급 표점표에서 단독으로 있었던 명수 있었나요? 3
같이 뭉치면 몇명인지 모르니까 작년 기하 89가 몇명인지 알 숯있나 미적 86이랑...
-
사탐중 암기과목 1
뭐가 있나요?!
-
제가 딱 건대는 안되고 동홍숙 정도의 성적인데 서울에서 많이 먼 지방 사람이고...
-
사십만덕까지 4
938덕 님만주면고
-
불과 1주전에 원장연 소리로 오르비 도배되면서 절대 원과목은 하면 안된다는 소리...
-
헤이헤이
-
ㄱㄱ
-
최고의 타워 철거 및 사이드 밀기 능력 동일성장 기준 절대 안밀리는 근접전(궁...
-
왜냐하면 제가 92이기 때문이에요
-
16 17 빼고 다 풀고 3분 남았는데 5번이 2개길래 5번으로 찍어서 풂
-
??: 00햄이 옳았습니다.. 이러면서
-
아 스카 1인실에서 문제를 찍는건지 계속 찰칵찰칵 거리네 8
무소음카메라좀 쓰자;;
-
휴학중인 상태로 정시모집 지원해서 합격이 가능한건가요? 가능하다면 합격 후 자퇴신청...
-
2번째 묻는중
-
대충 2-3일이면 되나
-
돈 마구 벌기
-
기말끝나고 성적 나오기 전까지 학종용 활동 ㅈㄴ뛰고 학기말 성적표 받은 다음에...
-
존나 멋있네...
-
책상 좁아서 불편하던데 걍 서랍에 넣나
-
으흐흐흐 3
흐흐
-
확통은 풀이가 사람에 따라서 다양하다는데 진짜 인가요? 머리 나쁘면 못할수도 있다던데;;
-
맞팔구 4
모세혈관은 홍해를 가릅니다
이해하는데 한참 걸림.
1+(tan^2)(x) ㅇㄷ
1+(tan^2)(x) = 일단 ㅇㄷ = 와드
1+(tan^2)(x) = sec^2 x
는
1 쁘라스 탄젠트 제곱 은 씨컨트 제곱이라고 읽는게 아니라
일(1) 단(tan^2)(x) 섹.....ㅅ(sec^2 x) 라고 읽는겁니당!
와드는 설명생략 비밀
위에 사진 제주도에 있는 박물관에 전시된 모형인가요?
글세요..;; 그냥 인터넷에서 '모세혈관'으로 검색한 사진입니다.
삼식이님 쪽지 확인부탁드립니다!!~~
확인했습니다.