[박주혁T] 함숫값의 차이는 도함수의 정적분이다.
네, 안녕하세요^^ 오랫만입니다~
오르비클래스 박주혁T 입니다. (사진의 둥이들 아빠입니다ㅋ 많이 컸네요 진짜ㅠ)
지난주에 교육청 모의고사가 있었고요,
뭐 개인적인 생각이긴 한데 수능이었다면 1컷 100점... 이 아니었을까 하는 생각이
들 정도의 시험이었습니다. (수학가형기준입니다. 나형은.. 어려웠거든요ㅠ)
오늘은 해설강의를 하다가, 이번 수학가형 교육청 모의고사는
지난해 (2018학년도지요) 6월, 9월을 제대로 반영한 문제가 있는데, 학생들이 이걸 잘 몰라서
강의를 하니까 " 엥? 처음듣는 이야기인데? " 라는 반응이 나와서
칼럼으로 써야겠다고 생각한 내용입니다.
어떤 문제를 해설하다가 그런 생각이 들었냐면요,
3월 수학가형 20번입니다.
문제는
이녀석이고,
뭐 빠른분들은 암산으로도 5번이네! 라고 할 수도 있는 문제입니다.
(물론 암산은 개인차가 있습니다)
이 문제의 해설은
------------------------------------------------------------------------
------------------------------------------------------------------------
여기까지가 교육청의 ㄱ ㄴ 보기 해설입니다.....만,
겨울에 기출문제 분석 제대로 하신분들은 이미 알고 계시죠?
ㄱ.ㄴ의 과정은 2018학년도 6월평가원 수학가형 30번과 동일한 논리구조입니다.
이미 문제가 떠오르신 분들도 계시겠지만.
안 그런분들을 위해 문제를 소환해보죠.
20180630 입니다.
안풀어보신 분들은 풀어보시는것도 좋을것 같습니다.
(해설강의 : http://class.orbi.kr/class/1182/ 의 2강 마지막에 30번해설이 있습니다)
이 문제를 해결할 때,
도함수가 우함수이고, 원함수가 (0 , f(0))의 점대칭 함수 란것은,
이 문제풀이의 기본적인 사항입니다.
그러니, 이 상황이 기출분석을 한 친구들이라면 자연스레 떠오를 것이고,
교육청 문제의 함수는 f(0)=0 인 상황이니까, ㄱ,ㄴ 이 참인것은 매우 자연스럽게 나오죠?
물론,
이녀석은 cosx 때문에 우함수가 될수 밖에 없음은 설명할 필요가 없다고 봅니다.
자, 그럼 ㄷ 보기로 넘어가보겠습니다.
문제를 다시 보죠.
함숫값을 물어보네요?
그런데 f(0)=0 이네요.
교육청 해설을 한번 볼까요? (그전에 안푼분들은 풀어보시고)
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
아하! 그렇구나 (무릎을 탁!!)
... 이러면 좋겠는데, 꽤 많은 해설강의들이 이러저러한 skill 이 있고,
이걸 기억해야 하는구나 - 정도로 해설강의가 이루어지고 있고, 학생들도
그냥 외울거 하나 추가요! 정도로 받아들이는 분위기라서,
저는 이 참에 공부를 좀 시켜보기로 했습니다.
우선은 이 글의 제목인 ,
[함숫값의 차이는 도함수의 정적분이다.] 를 연습하는거죠.
관련 기출은 20150930 입니다.
기출분석이 잘 되어 있다면,
로 놓고 , [함숫값의 차이는 도함수의 정적분이다.] 를 이용해서
어렵지 않게 풀어냄을 알 수 있습니다.
여기서 하나를 더 소환하겠습니다.
20180930입니다.
이 문제는 잘 살펴보건대,
[평행이동]이 핵심요소임을 알 수 있습니다.
x축 방향으로 평행이동을 하더라도, 최대/최소값이 변하지 않음이 핵심이죠.
안풀어보신 분들은 풀어보시는것도 좋을것 같습니다.
(해설강의 : http://class.orbi.kr/class/1271/ 의 2강 마지막에 30번해설이 있습니다.
평행이동을로의 해설이 무엇인지 잘 모르시면 꼭 들어보세요.)
자, 예전기출로 복습을 했으니, 적용해 보겠습니다.
다시 문제로 돌아가서
ㄷ 보기로 넘어가보겠습니다.
함숫값을 물어보네요? 그런데 f(0)=0 이네요.
물론,
이녀석은 cosx 때문에 우함수가 될수 밖에 없죠.
[함숫값의 차이는 도함수의 정적분이다.] 를 적용해 보았습니다.
그런데 도함수가 우함수인데, 적분구간이 그걸 써먹을 수가 없는 녀석이네요.
그럼, 20180930에서 사용한 평행이동을 사용해 보겠습니다.
아하, cos함수가 평행이동하니 sin 함수로 자연스럽게 바뀌면서 적분기호 안의 함수가
[기함수]가 되었네요!
그럼 ㄷ 보기도 참이네요.
어떻습니까?
문제하나 풀면서 기출을 주욱 훑었네요.
이런식으로 이 문제를 접근하면, 2018학년도의 대칭성 + 평행이동을 모두 복습하고 갈 수 있는 기회가 됩니다.
3월이던 4월이던 6월이던 9월이던 다 마찬가지입니다.
모의고사를 최선을다해 치르고,
그 다음의 "피드백"
과정이 중요합니다.
명심하시고, 3,4월 학습에 정진하시길 바랍니다^^
3월 교육청 해설강의는
수학가형
http://class.orbi.kr/class/1421/
수학나형
http://class.orbi.kr/class/1420/
입니다.
ps. 올해 저도 러셀의 손우혁선생님과 모의고사 출판계획이 있습니다.
그리고 올해 제헌모 /히든카이스도 해설합니다. 출간계획에 맞추어 공지하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 진짜 키 신경 안 써 한 173만 넘으면…
-
우승ㅇ
-
김말이 다시마튀각 삶은당근 미더덕 마이프로틴임팩트웨이내추럴바닐라맛 다섯은 거의 구역질할 수준임
-
시너지 많이 받는듯 얼굴은 피부,면도 깨끗이 정도만 유지하고
-
정시 23234 0
언미생지인데 어디까지 갈수있나요 건동홍은 갈수있나요 지구 잘하면 3뜰수도있음..
-
너무 배고파서 허겁지겁먹다가 이빨 나가버림뇨 어뜨캄뇨
-
내신 없이 누구나 갈 수 있는 영국 옥스포드, 캠브릿지 유학 알기 쉽게 알아보자! (오르비에 미국 영국 유학 프로그램 개설 강력 요력!!!) 1
출처 : 英옥스퍼드 학비, 美하버드 학비 어디가 더 저렴할까?...
-
수학 퀴즈 0
p^q가 유리수이도록 하는 무리수 p, q가 존재한다. (즉, 무리수의 무리수...
-
민트만 먹어도 좋음? 진짜로??
-
음식취향평가좀 1
물v비=식사는 비 후식은물 슈붕vs팥붕=팥붕 민초는먹을만함 데자와극혐함 솔의눈...
-
국어 90 2언매 수학 77 3 확통 영어 1 생윤 42 1 사문 45 1(2일수도…ㅜ)
-
기분 참 잡친다 0
오늘 원래 만나기로한 상대가 내가 화장하고 출발하려던 순간까지 답장없어서 걍...
-
음식취향 평가좀 12
민초좋아함 부먹 팥붕
-
팥시러함 2
팥죽 팥칼국수 팥빙수 아무튼 팥들어간건 다 시러함 그래서 붕어빵도 안 사먹은지...
-
생윤 만표 0
몇 일 거 같음?
-
ㅇㅇ
-
틀딱붕어빵은 3
반동이므로 전부 굴라그나 들어가세요 슈붕은 좋고 팥붕은 나쁘다
-
영어 4 라인 0
과상관없이 어디까지 가능할까요?ㅠㅠ
-
가채점 때에 비해 실채점 결과 만표가 비슷했나요 떨어졌나요?
-
6모 언미영물지 원점수(백분위) 1 3 3 3 1 94(100) 67(85) 73...
-
ㅈㄱㄴ
-
있으신 분 혹시 보내주실수 있나요…?
-
유대종 주간지는 하루 4지문이고 인강민철은 2지문이어서 인강민철로 2지문만 하고...
-
과탐 2등급 0
현시점 과탐 2등급 따기 제일 쉬운 과목? 아님 그냥 과탐 가산 버리고 사탐2...
-
화이팅 !!
-
수능 영어 2
1등급 6%대임? 맞다면 무조건 단국치 써야지
-
헉
-
최저 6개 썼는데 4개는 컷에 안걸쳐서 걍 무조건 맞춘건데 가고 싶은 2개가 컷에...
-
여기 슈붕 있나요 20
차단하게
-
ㄷ존경함
-
오르비는 오히려 더 활발해진 느낌
-
https://orbi.kr/00070222100/ 여긴 그래도 래커칠만 하고 본관...
-
수학... 0
수학은.. 어두운 방에서 스위치를 찾아서 불을 켜고 방안에 있는 답을 찾는 것...
-
ㄱㄱ학교만봄
-
오늘 부른 노래 2
Happy 한 페이지가 될 수 있게 눈의꽃 The great escape...
-
국어 - 김동욱 체크메이트,스위치온 + 일클 (수국김 여름에 들음) 강기본 고전시가...
-
제가 오리아나 같이 사이드가 약한 챔피언을 하면 바텀 라인을 못 밀고(나가면...
-
2026수능대비 UAA 컨텐츠들 전년과 같이 프로모터 시놉시스 어댑터 트레일러...
-
짜다 / 적당하다 / 후하다
-
션티 키스타트 12/6에 나오는 지 모르고 샀는데 다 못 끝낼것같아서 구매하실 분...
-
투과목선택자는 댓글로
-
성신여대에서도 “공학 전환 반대”···여대 전체로 번지는 ‘여대 존치’ 시위 5
동덕여대를 시작으로 확산하고 있는 ‘남녀공학 전환’ 논란이 타 여자대학에도 번지는...
-
그냥 입시와 거리두기중 진학사도 사긴했는데 억지로 안 보고… 현생에 집중하는 척 하면서 오르비하기
-
이거 일반 메가패스랑 따로 차이 없죠?
-
전장으로! 논술 전장 드가자~
-
크럭스 피오르 엔젤스..? 올해 꼭 보내시겠다는 의지…
저도 등급컷보고 당황했네요..
그리고 이과 24번과 문과 25번이
정답률 bottom 5 안에 있다는게
전 더 충격이었네요ㅠ
단순히 구분구적법을 정적분으로 변환하는 문제도 그 안에 있었던 것 같은데요.. 정말 수능이었다면 초토화되었을 것 같아요
ㅋㅋㅋ 근데 저 문제들 분할문제랑 지수 연산문제라서 더 충격이 컸네요
흠.. 본 해설에서의 20번의 요지는 함숫값의 차이가 도함수의 정적분이라기보다는
평행이동을 함으로써 적분구간을 조작하여 기함수로 만들 수 있다는 데 있는 것 아닌가요..?
네 그것도 맞고요ㅎ
f(파이)=f(파이)-f(0)=도함수 정적분
으로의 논리전개를 연습시키려는 의도가
있습니다^^
수업 열심히 듣고있어요~! 감사합니다
천사들이네요
파이팅!
화이팅ㅎ
와.. 벌써 이래 컸어요? ㅎㅎ 진짜 가끔 사진으로 보는 입장에서는 돌아서면 쑥쑥 크는것처럼 보여요 ~~
실제로 쑥쑥 큽니다 ㅋ
명쾌한 해설 감사합니다! 덕분에 수학적 관점이 이전보다 확장된거같네요
도움이 되실거에요^^
엥 제헌모랑 힠모가 나오는게 거의 확정된건가요 ㄷㄷ
글고 따님분들 정말 많이 컸네요 기쁘시겠습니다 ㅎㅎㅎㅎ
아마도 저자분들이 이야기 한거니까?
맞지 않을까요^^
아 그렇군요! 힠모의 귀환은 너무너무 기대되네요.. 현역때 봤던 모의고사인데 드디어 ㅠㅠ..
ㅋㅋ셤장에서 문제풀때 이게시글 제목 똑같이떠올렸는데 다행이네요
잘하셨습니다^^
선생님 그 디귿보기에서 도함수식에서 도함수식이 파이/2,0 에대칭이라는 항등식에 도함수를집어넣어도 쓸만한 풀이인가요
댓글로는 무슨 이야기인지 잘 모르겠어요ㅠ
오 제목보자마자 깜짝놀랐네요 작년 10월쯤에 고민해봤던 내용이어서요ㅋㅎ
캬 역시 의대 클래스^^
제가 애먹었던 ㄷ보기를 평행이동 하나만으로 순식간에 풀어버렸네요... 후... 왜 저는 저런 생각이 안될까요?
sin과 cos은 평행이동을 통해 우함수도 기함수도 될수 있음을 알아두시고요, 다음에 유사상황이 발생한다면, 그 성질을 적용시켜보는 연습을 하시면 좋을것 같습니다^^
분명 방학때 전부 풀었던 기출문제들인데 저는 시험장에서 문제를 맞추긴했지만 ㄷ 보기는 찍어서 맞췄답니다... 이런 글을 보니까 방학때 학습을 돌아보게 되는것 같아요 좀 더 제대로 된 기출분석을 해야겠다는... 이런 종류의 글을 볼때마다 수학적 시야도 넓히고 여러모로 정말 좋은 것 같습니다. 앞으로도 종종 올려주세요~
1컷 100 동감입니다.
3월 가형 30번은 작년수능 30번 오마주ㅋ
20번 ㄷ 해설지 풀이처럼은 실전에서 잘 안떠오를듯요... 그냥 그래프로 직관적으로 접근하는게 교육청 해설지보다 더 현실적이지 않을까싶기도 하네요...
좋은 해설감사요~~~
둥이들 잘 크네요~~^^
쑥쑥 자라고 있어요^^
공부하다가 이해가 안가는점이 있어서 댓글드립니다ㅜㅜ 아직 현역생인지라 질문수준이 낮은점 양해부탁드려요.
ㄷ보기를 평행이동하면 함수가 기함수가 된다고하셨는데 sin (ㅠsinx) 가 기함수라고 생각할수있죠?
기함수 합성 기함수는 기함수인가요?
x 대신 -x 넣어서 결과 확인해보세요~
질문해도될까요?? f합성g 에서 둘중에 하나라도 우함수면 전체가 우함수인가요? 아니면 g가 우함수일때 그런가요?
각 경우에도 모두 -x넣어서 확인해 보세요^^
f나 g둘중하나만이라더 우함수며누전체가 우함수내요
아 그리고 올클리어 데이랑 포카칩 다운받았어요 근데 etk랑 wp리뉴얼은 해설이 원래 없나요? 오르비패스 없어서 해설강의는 못들을것같아서요... 자료 베푸셨는데 귀찮게 해서 죄송합니다...
네 그들은 해설지가 없고 강의만 있습니다ㅠ
넵 알겠습니다 감사합니다
리킬마나 wp는 강의도 못듣던데 ㅠㅠㅠㅠ
올해 뉴버전으로 올라와서요~
문제 제공하신분들중에 작년 한정으로 허락하신분들도 있고요ㅠ 미안해요ㅜ
아니에요! ㅎ 이번년도꺼 리킬마들을까봐요 ㅎㅎ
원래 적분문제는 걍 기계식으로, 대수적으로, 단편적으로 왔다갔다 하다 걍 포기해버리는 수알못이었다가 최근에 역함수, 대칭함수의 적분과 변환등 다양한것을 접해보며 미적문제를 바라보는 새로운 눈을 키워가는 중인데 이번 3월 강의를 보며 매우 도움이 된 것 같습니다. 기존에 완벽히 정리하진 못하고 머릿속에 떠도는 것들이 한번에 정리된 느낌이네요.
따른 모든 해설강의와 유료 강의도 들어보고싶네요 ㅎㅎㅎ 감사합니다!
f'(x)가 (pi/2,0) 점대칭이라는 걸 이용해서
f (x)가 x=pi/2 선대칭임을 알아내면
ㄷ은 f (0)=f (pi)이므로 참입니다. 위에 어떤 학생이 이렇게 풀어도 되냐고 질문한 것 같네요.